首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Five new heteropolyoxotungstates K2Na2Mn2(H2O)12[Mn2(H2O)10Mn4(H2O)2(XW9O34)2]·18H2O (X=Ge, 1; X=Si, 2), Na4[Mn4(H2O)18Mn4(H2O)2(XW9O34)2]·22H2O (X=Ge, 3; X=Si, 4) and K3Na5[Mn2(H2O)6Mn4(H2O)2(SiW9O34)2]·23.5H2O (5) have been obtained by the routine synthetic reactions in aqueous solution. In 1 and 2, two isolated Mn2+ ions are covalently linked to the sandwich-type polyoxoanions [Mn4(H2O)2(B-α-XW9O34)2]12− (X=Ge or Si) by two μ2-oxygen atoms resulting in the disupporting sandwich-type polyoxometalates (POMs). Compounds 3 and 4 are built from the disupporting sandwich-type polyoxoanions 1 and 2, linked by additional four Mn2+ ions to construct a 1D ladder-like chain-like structure, which is rarely observed in the POM chemistry. Compound 5 represents the first example of the 2D structure consisting of the sandwich-type polyoxoanion [Mn4(H2O)2(SiW9O34)2]12− and the binuclear {Mn2(H2O)6}4+ group. The magnetic studies of compounds 1, 4 and 5 indicate that the antiferromagnetic interactions are predominant in the three compounds between Mn(II) metal ions.  相似文献   

2.
Three inorganic–organic composite sandwich-type phosphotungstates [Ni(tepa)(H2O)]4H2[Ni4(H2O)2(α-B-PW9O34)2]·8H2O (1), (enH2)3[Ni2(H2O)10][Ni4(H2O)2(α-B-PW9O34)2]·en·8H2O (2) and (enH2)10[Mn4(H2O)2(α-B-PW9O34)2]2·20H2O (3) (tepa=tetraethylenepentamine and en=ethylenediamine) have been synthesized by the hydrothermal reaction of the trivacant Keggin polyoxoanion [α-A-PW9O34]9− with Ni2+ or Mn2+ ions in the presence of tepa or en and structurally characterized by IR spectra, elemental analysis, thermogravimetric analysis and variable temperature magnetic susceptibility. X-ray crystallographic analyses indicate that they all contain the classical tetra-M sandwiched polyoxoanions [M4(H2O)2(α-B-PW9O34)2]10− (M=Ni2+ or Mn2+) and nickel-organoamine cations or organoamine cations work as the charge balance ions. The tetra-M clusters in 1, 2 and 3 exhibit the familiar structural type of a β-junction at the sites of metal incorporation. The study of magnetic property of 1 is indicative of a typical ferromagnetic coupling between Ni2+ cations.  相似文献   

3.
Two polyoxometalate (POM) supramolecular assemblies based on W18 clusters and the rigid organic trans-1,2-di-(4-pyridyl)-ethylen (bpe) have been synthesized and fully characterized, namely (H2bpe)3.5H2[SbW18O60]·5H2O (1), and (H2bpe)5[Ni4(AsW9O34)2(H2O)2]·3H2O (2). Compounds 1-2 are formed from organic bpe cations and different polytungstate anions: pseudo-Dawson-type [SbW18O60]9− in 1 and sandwich-type [Ni4(H2O)2(AsW9O34)2]10− in 2. Both of compounds 1-2 crystallize in a low-symmetrical space group of P-1 and consist of a complicated supramolecular network based on non-covalent intermolecular weak interactions, including hydrogen bonding and π···π stacking. The multipoint hydrogen bonding interactions constitute the structural feature in two supramolecular frameworks. The UV-vis, fluorescence and electrochemistry properties are also studied.  相似文献   

4.
Two Co4-substituted sandwich-type polyoxometalates (H2en)9[Co4(H2O)2(PW9O34)2]{[Co(H2O)4][Co4(H2O)2(PW9O34)2]}·18H2O (1) and (H2en)5[Co4(H2O)2(H3GeW9O34)2]{[Co(H2O)4]2[Co4(H2O)2(H2GeW9O34)2]}·16H2O (2) (en = ethylenediamine) have been hydrothermally synthesized and characterized by IR spectra, elemental analyses, thermogravimetric analyses, powder X-ray diffraction and single-crystal X-ray diffraction. Single-crystal structure analysis reveals that the molecules of 1 and 2 contain two Co4-substituted sandwich-type polyoxoanions. This type of a molecular unit containing double polyoxoanions is very rare. From the viewpoint of supramolecular chemistry, the sandwich-type polyoxoanions in 1 and 2 can be further extended to 3-D frameworks via extensive hydrogen-bonding interactions.  相似文献   

5.
A novel polyoxometalate {[Ni(enMe)2]2[Ni(enMe)2(H2O)]2[As2W18Ni4(enMe)2O68]}·2H3O·2H2O (1) (enMe = 1,2-propylenediamine) has been synthesized and characterized, which is the first high-dimensional structure constructed from sandwich-type transition metal substituted tungstates and transition metal coordination groups.  相似文献   

6.
Three Ni(II) complexes of cresol-based Schiff-base ligands, namely [Ni2(L1)(NCS)3(H2O)2], (1) [Ni2(L2)(CH3COO)(NCS)2(H2O)] (2) and [Ni2(L3)(NCS)3] (3), (where L1 = 2,6-bis(N-ethylpyrrolidineiminomethyl)-4-methylphenolato, L2 = 2,6-bis(N-ethylpiperidineiminomethyl)-4-methylphenolato and L3 = 2,6-bis{N-ethyl-N-(3-hydroxypropyl iminomethyl)}-4-methylphenolato), have been synthesized and structurally characterized by X-ray single-crystal diffraction in addition to routine physicochemical techniques. Density functional theory calculations have been performed to understand the nature of the electronic spectra of the complexes. Complexes 1?C3 when reacted with 4-nitrophenyl phosphate in 50:50 acetonitrile?Cwater medium promote the cleavage of the O?CP bond to form p-nitrophenol and smoothly convert 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylquinone (3,5-DTBQ) either in MeOH or in MeCN medium. Phosphatase- and catecholase-like activities were monitored by UV?Cvis spectrophotometry and the Michaelis?CMenten equation was applied to rationalize all the kinetic parameters. Upon treatment with urea, complexes 1 and 2 give rise to [Ni2(L1)(NCS)2(NCO)(H2O)2] (1??) and [Ni2(L2)(CH3COO)(NCO)(NCS)(H2O)] (2??) derivatives, respectively, whereas 3 remains unaltered under same reaction conditions.  相似文献   

7.
《中国化学快报》2021,32(12):3803-3806
The design of assembling high-nuclearity transition-lanthanide (3d-4f) clusters along with excellent magnetocaloric effect (MCE) is one of the most prominent fields but is extremely challenging. Herein, two heterometallic metal coordination polymers are constructed via the “carbonate-template” method, formulated as {[Gd18Ni24(IDA)22(CO3)7(μ3-OH)32(μ2-OH)3(H2O)5Cl]·Cl8·(H2O)14}n and {[Eu18Ni23.5(IDA)22(CO3)7(μ3-OH)32(H2O)5(IN)(CH3COO)2(NH2CH2COO)Cl]·Cl6·(H2O)17}n [abbreviated as 1-(Gd18Ni24)n and 2-(Eu18Ni23.5)n respectively; H2IDA = iminodiacetic acid; HIN = isonicotinic acid]. Concerning the structures, compounds 1-(Gd18Ni24)n and 2-(Eu18Ni23.5)n both feature the one-dimensional (1D) chain-like structure which is rarely reported in high-nuclearity metal complexes. Meanwhile, the large presences of Gd3+ ions in compound 1-(Gd18Ni24)n are conducive to the fantastic MCE, and the value of −∆Sm is 35.30 J kg−1 K−1 at 3.0 K and ∆H = 7.0 T. And more significantly, compound 1-(Gd18Ni24)n shows the large low-field magnetic entropy change (−∆Sm = 20.95 J kg−1 K−1 at 2.0 K and ∆H = 2.0 T) among the published 3d-4f mixed metal clusters.  相似文献   

8.
Two 3D hybrid sandwich-type polyoxometalates, [{Sr(H2O)5Sr(H2O)6Sr0.5(H2O)7}2Mn4(H2O)2(α-PW9O34)2]·6H2O (1) and [{Sr(H2O)6[Sr(H2O)8]2Sr(H2O)4}2Mn4(H2O)2(αββα-P2W15O56)2]·5H2O (2), have been obtained by the routine synthetic reactions in aqueous solution and characterized by IR, elemental analysis, thermal analysis, and X-ray single-crystal diffraction. The 3D hybrid framework of 1 and 2 are built by tetra-MnII substituted sandwich-type polyoxotungstates modified by fourteen Sr(H2O)x (x=4-8) units acting as bridges, forming centrosymmetric sandwich structures. The magnetic property of compound 1 has been studied by measuring its magnetic susceptibility in the temperature range of 2-300 K, which indicates predominant ferromagnetic interactions between the MnII-O-MnII bridge unit. Additionally, the electrochemical behaviours have been detected on solid bulk modified carbon paste electrodes of compounds (CPEs) and three redox couples are detected.  相似文献   

9.
Four new hexa-nickel(II)-substituted Keggin-type tungstophosphates [Ni63-OH)3(oeen)3(H2O)3(B-α-PW9O34)]·6H2O (1, oeen = N-(2-hydroxyethyl)enediamine), [Ni63-OH)3(oeen)3(H2O)4(B-α-PW9O34)]2·13H2O (2), [Ni63-OH)3(oeen)2(tran)(H2O)3(B-α-PW9O34)]·3H2O (3, tran = 1,4,7-triazonane) and [Ni63-OH)3(oeen)2(tran)(H2O)2(B-α-PW9O34)]·6H2O (4) have hydrothermally made by controlling their reaction temperatures. 14 have been characterized by elemental analyses, IR spectra, powder X-ray diffraction, thermogravimetric analyses and single-crystal X-ray diffraction, respectively. Structural analyses reveal that they consist of {Ni63-OH)3(H2O) n }9+ cores and B-α-PW9O34 (PW9) units, and further are stabilized by organic neutral oeen/tran molecules. 13 are isolated clusters while 4 is the 1D chain structure. It should be noted that the tran molecules in 3 and 4 are derived from the oeen molecules in the starting materials.  相似文献   

10.
Four homotrinuclear linear coordination compounds with bridging ligand of (m-phenol)-1,2,4-triazole, [Mn3(L)6(H2O)6](ClO4)6 (1), [Ni3(L)6(H2O)6](BF4)6·4DMF (2), [Cd3(L)6(H2O)6](ClO4)6· 2H2O·2DMF·2EtOH (3), [Zn3(L)8(H2O)4](BF4)4(SiF6)·2EtOH·12H2O (4), have been synthesized and structurally determined. The structures consist of three metal ions in linear arrangements, linked to each other by two pairs of three N1, N2 bridging triazole ligands. The negative value of J suggests that antiferromagnetic interaction exists in 1. Green fluorescence of 2 and 4 with emissions at 518 nm for 2 and 524 for 4 is possibly assigned to LMCT. The energy gaps of the compounds 2 and 4 are 1.82 and 1.97 eV, respectively, which suggests that the two materials behave as semiconductors.  相似文献   

11.
Three new sandwich-type polyoxotungstates (POTs) decorated by nickel-2,2′-bpy complexes [{Ni(2,2′-bpy)2(H2O)}2{Ni(2,2′-bpy)}2 {Ni4(H2O)2(B-α-XW9O34)2}]n− (X=PV, n=4 for 1; X=AsV, n=4 for 2; X=GeIV, n=4 for 3) (2,2′-bpy=2,2′-bipyridine) were successfully synthesized under hydrothermal conditions and structurally characterized by elemental analyses, IR spectroscopy, single-crystal X-ray diffraction, and magnetic properties. Single-crystal structural analyses indicate that 1 and 2 are isostructural and both crystallize in the monoclinic space group C2/c, whereas 3 belongs to the triclinic space group . To our knowledge, 1, 2 and 3 represent rare examples of the organic-inorganic hybrid sandwich-type polyoxometalates functionalized by multiple nickel-aromatic amine complexes. Magnetic measurements of 1 exhibit the presence of ferromagnetic interactions within the rhombic tetranuclear-NiII cluster.  相似文献   

12.
Four new complexes [Ni3(μ-L)6(H2O)6](NO3)6·6H2O (1), [Co3(μ-L)6(H2O)6](NO3)6·6H2O (2), [Ni3(μ-L)6(H2O)4(CH3OH)2](NO3)6·4H2O (3), [Co3(μ-L)6(H2O)4(CH3OH)2](NO3)6·4H2O (4) (L = 4-amino-3,5-dimethanyl-1,2,4-triazole) were synthesized and structurally characterized by X-ray single-crystal diffraction. The structural analyses show that complex 1 and 2 are isomorphous; complex 3 and 4 are isomorphous. Four complexes all consist of the linear trinuclear cations ([M3(μ-L)6(H2O)6]6+ (M = Ni,Co) for 1 and 2; [M3(μ-L)6(H2O)4(CH3OH)2]6+ (M = Ni,Co) for 3 and 4), NO3 anions and crystallized water molecules. In the trinuclear cations, the central M(II) ions and two terminal M(II) ions are bridged by three triazole ligands. Other eleven solid solution compounds which are isomorphous with complex 3 and 4 were obtained by using different ratio of Ni(II) and Co(II) ions as reactants and ICP result indicates that ligand L has higher selectivity of Ni(II) ions than that of Co(II) ions. The magnetic analysis was carried out by using the isotropic spin Hamiltonian ? = −2J(?1?2 + ?2?3) (for complexes 1 and 3) and simultaneously considering the temperature dependent g factor (for complexes 2 and 4). Both the UV-Vis spectra and the magnetic properties of the solid solutions can be altered systematically by adjusting the Co(II)/Ni(II) ratio.  相似文献   

13.
A new Ni4 distorted cubane complex [Ni43-OMe)4Q4(MeOH)4] (1) (where Q is the anion of 8-quinolinol) is obtained from the reaction of NaQ with Ni(OAc)2 · 4H2O in refluxing MeOH via solvent derived μ3-OMe assisted self-assembly of four nickel(II) centres. The periphery of [Ni4(OMe)4] cubane is covered by four Q and four MeOH molecules. This methanol specific reaction is not supported in solvent glycinol (Hgl; NH2(CH2)2OH), an amine substituted ethanol, producing monomeric [NiQ2(Hgl)2] · 2H2O (2 · 2H2O) instead and is able to cleave 1 to yield 2 · 2H2O. The cryomagnetic susceptibility data of powdered 1 can be modeled by a two J equation yielding J1 = −1.8(1) cm−1, J2 = 3.9(1) cm−1 and g = 2.24.  相似文献   

14.
The reactions of 2-(hydromethyl)pyridine, hmpH, with Ni(O2CMe)2·4H2O in H2O, in the absence of counterions, have been investigated. The synthetic study has led to the two new complexes [Ni(O2CMe)2(hmpH)2] (1) and [Ni4(O2CMe)4(hmp)4(H2O)2] (2). Complex 1 can also be transformed into 2 by reacting with an excess of NaOH in H2O. The structures of 1 and 2·2.25H2O·0.5(1,4-dioxane) have been solved by single-crystal, X-ray crystallography. The octahedral NiII center in centrosymmetric 1 is coordinated by two 1.10 (Harris notation) MeCO2 groups and two N,O-chelating (1.11) hpmH ligands. The tetranuclear cluster molecule of 2·2.25H2O·0.5(1,4-dioxane) possesses a distorted cubane {Ni43-OR′)4}4+ core [R′ = (2-pyridyl)CH2–] with the NiII ions and the oxygen atoms from the 3.31 hmp ligands occupying alternate vertices of the cube. Two 2.11 MeCO2 groups cap two opposite faces of the cube, while two 1.10 MeCO2 ions and two aqua ligands complete the octahedral coordination sphere of the metal centers. Characteristic IR bands for the two complexes are discussed in terms of the nature of bonding and the structures of the two complexes. The variable-temperature magnetic properties of 2 have been modeled with two J values, and reveal antiferromagnetic exchange interactions between the four NiII ions to give a diamagnetic ground state.  相似文献   

15.
Two new one-dimensional chain-like compounds, K4Na4[Mn2(H2O)8Mn4(H2O)2(GeW9O34)2] · 20.5H2O (1) and K2Na4Cu2(H2O)12[Cu(H2O)2Cu4(H2O)2(SiW9O34)2] · 15H2O (2), constructed from the sandwich-type clusters, have been obtained by the routine synthetic reactions in aqueous solutions, and their structures were determined by X-ray single crystal diffraction analysis. The crystal data is following: for 1, space group, monoclinic, P 21/n, a = 16.693(3) Å, b = 14.935(3) Å, c = 20.090(4) Å, β = 92.23(3)°, V = 5004.7(17) Å3, Z = 2; For 2, space group, triclinic, P ?1, a = 11.744(2) Å, b = 13.415(3) Å, c = 17.609(4) Å, α = 73.08(3)°, β = 82.68(3)°, γ = 65.18(3)°, V = 2409.1(8) Å3, Z = 1. The crystal structure of 1 shows a 1D ladder-like chain, built up of the sandwich anions [Mn4(H2O)2(GeW9O34)2]12? and the Mn2+ ions. Compound 2 is a polymeric chain, composed of the Cu-substituted sandwich-type anions [Cu4(H2O)2(SiW9O34)2]12? linked by the Cu(H2O)4 clusters. These extended materials based on the sandwich-type polyoxoanions are rarely reported in the POM chemistry.  相似文献   

16.
Nickel and copper complexes containing 1,3,5-benzenetricarboxylic acid, with a combination of selected N-donor ligands and Schiff bases, of the composition Ni3(bimz)6(btc)2 · 12H2O (1), Ni3(btz)9(btc)2 · 12H2O (2), Ni2(L1)(btc) · 7H2O (3), Ni3(L2)2(Hbtc) · 9H2O (4), Ni2(L3)(btc) · 4H2O (5), Cu2(L4)(btc) · 7H2O (6), [Cu3(pmdien)3(btc)](ClO4)3 · 6H2O (7) and [Cu3(mdpta)3(btc)](ClO4)3 · 4H2O (8); H3btc = 1,3,5-benzenetricarboxylic acid, bimz = benzimidazole, btz = 1,2,3-benztriazole, L1 = 2-[(phenylimino)methyl]phenol, L2 = N,N′-bis-(salicylidene)propylenediamine, L3 = 2-{[(2-nitrophenyl)methylene]amino}phenol, L4 = 2-[(4-methoxy-phenylimino)methyl]phenol, pmdien = N,N,N′,N″,N″-pentamethyldiethylenetriamine, mdpta = N,N-bis-(3-aminopropyl)methylamine, have been synthesized. The complexes have been studied by elemental analysis, IR, UV–Vis spectroscopies, magnetochemical and conductivity measurements and selected compounds also by thermal analysis. The crystal and molecular structure of complex 8 was solved. The complex is trinuclear with btc3−-bridge. The coordination polyhedron around each copper atom can be described as a distorted square with a CuON3 chromophore formed by one oxygen atom of carboxylate and three nitrogen atoms of mdpta. The magnetic properties of 8 have been studied in the 1.8–300 K temperature range revealing a very weak antiferromagnetic exchange interaction with J = −0.56 cm−1 for g = 2.13(9). The antimicrobial activities against selected strains of bacteria were evaluated. It was found that only complex 5 is able to inhibit the growth of Staphylococcus strains.  相似文献   

17.
Two 3D open-framework nickel diphosphonates, [Ni3(H2zdn)2(bpe)2]·4H2O (1) and [Ni3(H2zdn)2(bpy)2]·bpy·4H2O (2) (H5zdn = zoledronic acid, bpe = trans-4,4-vinylenedipyridine, bpy = 4,4′-dipyridyl), have been prepared and structurally characterized. In complex 1, the metal centers are linked by zoledronate ligands to generate a 2D layer, containing 14- and 24-membered rings. These 2D layers are further pillared by the bpe ligands into a 3D network structure with cylindrical channels. Magnetic susceptibility measurements reveal ferrimagnetism at T c = 3.8 and 4.4 K for complexes 1 and 2, respectively.  相似文献   

18.
Using an octadentate ligand, namely tetrakis[(3,5-dicarboxyphenoxy)methyl] methane (H8L), four coordination polymers, [Ni3L(OH)2(H2O)2][NH2(CH3)2]4·5H2O (1), [Co4L(H2O)4]·9H2O (2), [Zn4L(H2O)4]·DMF·11H2O (3) and [Li4(H4L)(H2O)4] (4) (DMF = N,N-dimethylformamide), have been solvothermally synthesized and structurally characterized by X-ray crystallography. Complex 1 is an anionic three-dimensional open framework built from tricluster {Ni3(COOR)8} and square planar L ligands to give a uninodal 6-connected pcu network. Complexes 2 and 3 are isostructural, possessing a non-interpenetrated three-dimensional network with rare (4,8)-connected scu topology. Complex 4 consists of 4-connecting {Li2(COOR)4} clusters which form a 2D Shubnikov tetragonal plane net with sql topology. Complexes 1–3 all have large solvent accessible voids, but only complex 3 possesses permanent porosity as confirmed by N2, H2, CO2 and CH4 gas adsorption measurements. In addition, complex 3 shows strong photoluminescent emissions at room temperature with a peak at 365 nm, owing to a ligand-centered excited state. The emission intensities of 3 varied upon contact with different solvents or analytes.  相似文献   

19.
The bimetallic [Ni2(H2L2)2](ClO4)4 (1), [Ni2(HL2)(H2L2)](ClO4)3 (2) and [Zn2(H2L2)2](BF4)4 (3) complexes (H2L2 = N,N2-bis[(1E)-1-(2-pyridyl)ethylidene]propanedihydrazide) were synthesized and characterized. The structure of complexes (1) and (2) was established by X-ray analysis. NMR spectroscopy was used for the characterization of complex (3). The complexes (1) and (2) were obtained from the same synthetic reaction and two crystal types of these complexes have been isolated during the fractional crystallization process.  相似文献   

20.
A series of seven novel f-element bearing hybrid materials have been prepared from either methyl substituted 3,4 and 4,5-pyrazoledicarboxylic acids, or heterocyclic 1,3- diketonate ligands using hydrothermal conditions. Compounds 1, [UO2(C6H4N2O4)2(H2O)], and 3, [Th(C6H4N2O4)4(H2O)5]·H2O feature 1-Methyl-1H-pyrazole-3,4-dicarboxylate ligands (SVI-COOH 3,4), whereas 2, [UO2(C6H4N2O4)2(H2O)], and 4, [Th(C6H5N2O4)(OH)(H2O)6]2·2(C6H5N2O4)·3H2O feature 1-Methyl-1H-pyrazole-4,5-dicarboxylate moieties (SVI-COOH 4,5). Compounds 5, [UO2(C13H15N4O2)2(H2O)]·2H2O and 6, [UO2(C11H11N4O2)2(H2O)]·4.5H2O feature 1,3-bis(4-N1-methyl-pyrazolyl)propane-1,3-dione and 1,3-bis(4-N1,3-dimethyl-pyrazolyl)propane-1,3-dione respectively, whereas the heterometallic 7, [UO2(C11H11N4O2)2(CuCl2)(H2O)]·2H2O is formed by using 6 as a metalloligand starting material. Single crystal X-ray diffraction indicates that all coordination to either [UO2]2+ or Th(IV) metal centers is through O-donation as anticipated. Room temperature, solid-state luminescence studies indicate characteristic uranyl emissive behavior for 1 and 2, whereas those for 5 and 6 are weak and poorly resolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号