首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
4-Benzylamino-6-methyl-1H-pyrrolo[3,2-c]pyridine ( 2 ) and 4-benzylamino-6-methyl-1H-pyrrolo[2,3-b]pyridine ( 3 ) were synthesized as deaza analogues of the anxiolytic agent 4-benzylamino-2-methyl-7H-pyrrolo[2,3-d]pyrimidine ( 1 ). The 1-deaza analogue (2) was prepared via a multi-step procedure from a pyrrole precursor, 1-benzyl-2-formylpyrrole ( 4 ) while the 3-deaza analogue 3 was synthesized from a pyridine precursor, 2-amino-3,6-dimethylpyridine ( 12 ).  相似文献   

2.
Guanidine transforms the following: (a) 3-formylchromone into a mixture of 2-amino-5-(2-hydroxybenzoyl)pyrimidine and 2-amino-5H-[1]-benzopyrano[4,3-d]pyrimidine; (b) the diacetate of 3-methylidyne-chromone into 2-amino-5-hydroxy-5H-[1]benzopyrano[4,3-d]pyrimidine; and (c) the oxime of 3-formylchromone into 2-amino-5H-[1]benzopyrano-[4,3-d]pyrimidin-5-one. Thiourea, acetamidine and nitroguanidine can also generate pyrimidines of the same type with 3-formylchromone, the diacetate of 3-methylidynechromone or 3-(1,3-dioxolan)chromone.  相似文献   

3.
A number of 2,4-disubstituted pyrrolo[3,2-d]pyrimidine N-5 nucleosides were prepared by the direct glycosylation of the sodium salt of 2,4-dichloro-5H-pyrrolo[3,2-d]pyrimidine (3) using 1-chloro-2-deoxy-3,5-di-O-(p-toluoyl)-α-D -erythropentofuranose (1) and 1-chloro-2,3,5-tri-O-benzyl-α-D-arabinofuranose (11) . The resulting N-5 glycosides, 2,4-dichloro-5-(2-deoxy-3,5-di-O-(p-toluoyl) -β-D-erythropentofuranosyl)-5H-pyrrolo-[3,2-d]pyrimidine (4) and 2,4-dichloro-5-(2,3,5-tri-O-benzyl-β-D-arabinofuranosyl-5H -pyrrolo [3,2-d)pyrimidine (12) , served as versatile key intermediates from which the N-7 glycosyl analogs of the naturally occurring purine nucleosides adenosine, inosine and guanosine were synthesized. Thus, treatment of 4 with methanolic ammonia followed by dehalogenation provided the adenosine analog, 4-amino-5-(2-deoxyerythropentofuranosyl) -5H-pyrrolo[3,2-d]pyrimidine (6) . Reaction of 4 with sodium hydroxide followed by dehalogenation afforded the inosine analog, 5-(2-deoxy-β-D-erythropentofuranosyl) -5H-pyrrolo[3,2-d]pyrimidin-4(3H)-one (9) . Treatment of 4 with sodium hydroxide followed by methanolic ammonia gave the guanosine analog, 2-amino-5-(2-deoxy-β-D-erythropentofuranosyl) -5H-pyrrolo[3,2-d]pyrimidin-4(3H)-one (10) . The preparation of the same analogs in the β-D-arabinonucleoside series was achieved by the same general procedures as those employed for the corresponding 2′-deoxy-β-D-ribonucleoside analogs except that, in all but one case, debenzylation of the sugar protecting groups was accomplished with cyclohexene-palladium hydroxide on carbon, providing 4-amino-5-β-D-arabinofuranosyl-5H-pyrrolo [3,2-d]pyrimidin-4(3H)-one (18) . Structural characterization of the 2′-deoxyribonucleoside analogs was based on uv and proton nmr while that of the arabinonucleosides was confirmed by single-crystal X-ray analysis of 15a . The stereospecific attachment of the 2-deoxy-β-D-ribofuranosyl and β-D-arabinofuranosyl moieties appears to be due to a Walden inversion at the C1 carbon by the anionic heterocyclic nitrogen (SN2 mechanism).  相似文献   

4.
2H-5-Amino-6-cyano-3,7-dioxothiazolo[2,3-b]pyrimidine was subjected to ring formation affording thiazolo[2,3-b]pyrimidine derivatives. 2H-5-Amino-6-cyano-3,7-dioxo-2-phenylmethylenethiazolo[2,3-b]pyrimidine was also subjected to ring formation affording pyrimido[4,5-d]-, pyrano[2,3-d]-, and pyrido[2,3-d]thiazolo[2,3-b]pyrimidine derivatives. 2-Anilinothiocarbonyl-3,9-dioxo-8-imino-7-phenyl-6-thioxothiazolo[2,3-b]pyrimido[4,5-d]pyrimidine and 8-amino-3,9-dioxo-6-thioxothiazolo[2,3-b]pyrimido[4,5-d]pyrimidine reacted with α-haloactive-methylene compounds to afford heterocyclic compounds containing two, fused and isolated, thiazole moieties, respectively.  相似文献   

5.
Several disubstituted pyrazolo[3,4-d]pyrimidine, pyrazolo[1,5-a]pyrimidine and thiazolo[4,5-d]pyrimidine ribonucleosides have been prepared as congeners of uridine and cytidine. Glycosylation of the trimethylsilyl (TMS) derivative of pyrazolo[3,4-d]pyrimidine-4,6(1H,5H,7H)-dione ( 4 ) with 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose ( 5 ) in the presence of TMS triflate afforded 7-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)pyrazolo-[3,4-d]pyrimidine-4,6(1H,5H)-dione ( 6 ). Debenzoylation of 6 gave the uridine analog 7-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidine-4,6(1H,5H)-dione ( 3 ), identical with 7-ribofuranosyloxoallopurinol reported earlier. Thiation of 6 gave 7 , which on debenzoylation afforded 7-β-D-ribofuranosyl-6-oxopyrazolo[3,4-d]pyrimidine-4(1H,5H)-thione ( 8 ). Ammonolysis of 7 at elevated temperature gave a low yield of the cytidine analog 4-amino-7-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-6(1H)-one ( 11 ). Chlorination of 6 , followed by ammonolysis, furnished an alternate route to 11 . A similar glycosylation of TMS-4 with 2,3,5-tri-O-benzyl-α-D-arabinofuranosyl chloride ( 12 ) gave mainly the N7-glycosylated product 13 , which on debenzylation provided 7-β-D-arabinofuranosylpyrazolo[3,4-d]pyrimidine-4,6(1H,5H)-dione ( 14 ). 4-Amino-7-β-D-arabinofuranosyl-pyrazolo[3,4-d]pyrimidin-6(1H)-one ( 19 ) was prepared from 13 via the C4-pyridinium chloride intermediate 17 . Condensation of the TMS derivatives of 7-hydroxy- ( 20 ) or 7-aminopyrazolo[1,5-a]pyrimidin-5(4H)-one ( 23 ) with 5 in the presence of TMS triflate gave the corresponding blocked nucleosides 21 and 24 , respectively, which on deprotection afforded 7-hydroxy- 22 and 7-amino-4-β-D-ribofuranosylpyrazolo[1,5-a]pyrimidin-5-one ( 25 ), respectively. Similarly, starting either from 2-chloro ( 26 ) or 2-aminothiazolo[4,5-d]pyrimidine-5,7-(4H,6H)-dione ( 29 ), 2-amino-4-β-D-ribofuranosylthiazolo[4,5-d]pyrimidine-5,7(6H)-dione ( 28 ) has been prepared. The structure of 25 was confirmed by single crystal X-ray diffraction studies.  相似文献   

6.
The reaction of 6-amino-1,3-dimethyluracil with equimolar amounts of arylalkanone Mannich bases under optimized reaction conditions leads to 7-aryl-5,6-dihydropyrido[2,3-d]pyrimidines in a yield of 50-80%. Functionalization of these dihydropyridopyrimidine(1H,3H)-2,4-diones with the Vilsmeier reagent affords, depending on the reaction conditions, either 6-dimethylaminomethylidene substituted 5H-pyrido[2,3-d]pyrimidine(1H,3H)-2,4-diones or the corresponding pyridopyrimidine(1H,3H)-2,4-diones bearing a carboxaldehyde function in position 6 of the heterocycle. Some further transformations of the aldehyde function demonstrate the synthetic potential of the synthesized structures, introducing pharmacologically relevant basic substituents into the side chain of these pyrido[2,3-d]pyrimidine derivatives.  相似文献   

7.
A new method of the synthesis of heterocyclic derivatives of trifluoroalanine based on the cyclocondensation of methyl trifluoropyruvate tert-butoxycarbonylimine with C,N- and N,N-binucleophiles, like Nsubstituted ureas, 1-benzyl-6-aminouracil, benzamidine, and 3-aminocrotononitrile, followed by hydrolysis of the resulting Boc-derivatives to 5-amino-5-trifluoromethylimidazolidine-2,4-diones, 5-amino-5-trifluoromethyl-1-benzyl-5,7-dihydropyrrolo[2,3-d]-pyrimidine-2,4,6-3H-trione, 4-amino-2-methyl-5-oxo-4-(trifluoromethyl)-4,5-dihydro-1H-pyrrole-3-carbonitrile, or 5-amino-5-trifluoromethyl-2-phenyl-3,5-dihydroimidazol-4-one, respectively, was developed.  相似文献   

8.
Several 3-alkoxysubstituted pyrazolo[3,4-d]pyrimidine ribonucleosides structurally related to adenosine, inosine and guanosine have been prepared by the direct glycosylation of preformed aglycon precursor containing a 3-alkoxy substituent. Ring closure of 5(3)-amino-3(5)-ethoxypyrazole-4-carboxamide ( 6b ) with either formamide or potassium ethyl xanthate gave 3-ethoxyallopurinol ( 7b ) and 3-ethoxy-6-thioxopyrazolo[3,4-d]-pyrimidin-4(5H,7H)-one ( 10 ), respectively. Methylation of 10 gave the corresponding 6-methylthio derivative 15 . Similar ring annulation of 5(3)-methoxypyrazole-4-carboxamide ( 6a ) with formamide afforded 3-methoxyallopurinol ( 7a ). Treatment of 5(3)-amino-3(5)-methoxypyrazole-4-carbonitrile ( 5a ) with formamidine acetate furnished 4-amino-3-methoxypyrazolo[3,4-d]pyrimidine ( 4 ). High-temperature glycosylation of 7b with 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose in the presence of boron trifluoride etherate gave a 2:1 mixture of N-1 and N-2 glycosyl blocked nucleosides 11b and 13b . Deprotection of 11b and 13b with sodium methoxide gave 3-ethoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4(5H)-one ( 12b ) and the corresponding N-2 glycosyl isomer 14b , respectively. Similar glycosylation of either 4 or 7a , and subsequent debenzoylation gave exclusively 4-amino-3-methoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidine ( 9 ) and 3-methoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4-(5H)-one ( 12a ), respectively. The structural assignment of 12a was made on the basis of single-crystal X-ray analysis. Application of this general glycosylation procedure to 15 gave the corresponding N-1 glycosyl derivative 16 as the sole product, which on debenzoylation afforded 3-ethoxy-6-(methylthio)-1-(3-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4(5H)-one ( 17 ). Oxidation of 16 and subsequent ammonolysis furnished the guanosine analog 6-arnino-3-ethoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]-pyrimidin-4(5H)-one ( 19 ). Similarly, starting from 3-methoxy-4,6-bis(methylthio)pyrazolo[3,4-d]pyrimidine ( 20 ), 6-amino-3-methoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4(5H)-one ( 23 ) was prepared.  相似文献   

9.
Tricyclic analogs of piperazinylthiopyrano[3,2-d]pyrimidine hypoglycemic agents were prepared. The angular tricyclic systems, 8,9-dihydro-7H-thiopyrano[2,3-e][1,2,4]triazolo[4,3-a]pyrimidine and 8,9-dihydro-7H-tetrazolo[1,5-a]thiopyrano[2,3-e]pyrimidine derivatives were synthesized from 2,4-dichloro-7,8-dihydro-6H-thiopyrano[3,2-d]pyrimidine in three step sequences. Derivatives of the linear tricyclic system, 5,6-dihydro-7H-thiopyrano[3,2-d][1,2,4]triazolo[2,3-a]pyrimidine, were prepared by condensation of 3-amino-1,2,4-triazole with ethyl 3-oxo-tetrahydropyran-2-carboxylate. The tricyclic heteroaryl-piperazines lacked significant hypoglycemic activity.  相似文献   

10.
Leila Moafi 《Tetrahedron letters》2010,51(48):6270-6274
The synthesis of 2-amino-4-cyano-4H-chromene derivatives as new HA 14-1 analogues by a simple and efficient method is reported. In addition, the reaction of 2-amino-2H-chromene-3-carbonitriles, salicylaldehydes and amines results in the formation of new chromeno[2,3-d]pyrimidine derivatives.  相似文献   

11.
Starting from 7-chloro-3-methyl-1H-pyrazolo[4,3-d]pyrimidine ( 1 ) by reaction with methanol/hydrogen chloride, subsequent methylation and reaction with N-bromosuccinimide 3-bromomethyl-7-methoxy-1-methyl-1H-pyrazolo[4,3-d]pyrimidine ( 6 ) is prepared. Treatment with ethylene glycol in the presence of potassium carbonate/potassium iodide and subsequent reaction with ethanolic ammonia afforded 7-amino-3-(2-hydroxyethoxymethyl)-1-methyl-1H-pyrazolo[4,3-d]pyrimidine ( 11 ) an acyclo analog of formycin A.  相似文献   

12.
The reaction between 5-amino-4-imino-1(2)-substituted-1(2)H-4,5-dihydropyrazolo[3,4-d]pyrimidines and several commercially available reactants afforded new heterocycles with a conserved pyrazolo[3,4-d]pyrimidine nucleus. The key intermediates employed proved to be suitable compounds by virtue of their two vicinal amino and imino groups that were used to obtain five, six and seven-membered rings.  相似文献   

13.
Polyfunctional 3-chloro-3-(4-chlorocoumarin-3-yl)prop-2-enal ( 1 ) used as a precursor for heterocyclic synthesis. Dichloro-aldehyde 1 was allowed to react with variable nucleophilic reagents, and a diversity of heterocyclic systems linked coumarin moiety at position 3 was synthesized. The reaction of compound 1 with guanidine and cyanoguanidine produced 3-(pyrimidin-4-yl)-4-chlorocoumarins 2 and 3 . Treating compound 1 with 3-amino-1,2,4-triazole and 2-aminobenzimidazole yielded triazolo[4,3-a]pyrimidine 4 and pyrimido[1,2-a]benzimidazole 5 . The treatment of compound 1 with cyanoacetamide, N-benzyl-2-cyanoacetamide, and 1H-benzimidazolylacetonitrile gave 2(1H)-pyridones 6 , 7 and pyrido[1,2-a]benzimidazole 8 . The reaction of compound 1 with 5-amino-3-methyl-1H-pyrazole and 6-aminouracil afforded pyrazolo[3,4-b]pyridine 9 and pyrido[2,3-d]pyrimidine 10 , respectively. Compound 1 reacted with ethylenediamine, o-phenylenediamine , o-aminophenol, and o-aminothiophenol leading to 5-(imidazolylmethyl)chromeno[4,3-e] [1,4]diazepine ( 12 ), 3-(benzodiazepin/benzoxazepin-2-yl)-4-chlorocoumarins 13 , 14 , and 6-(benzothiazol-2-ylmethyl)chromeno[4,3-b][1,5]benzothiazepine 16 , respectively. Structures of the new synthesized products were deduced on the basis of their analytical and spectral data.  相似文献   

14.
Synthesis of the pyrazolo[3,4-d]pyrimidin-3-one congeners of guanosine, adenosine and inosine is described. Glycosylation of 3-methoxy-6-methylthio-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one ( 13 ) with 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose ( 16 ) in the presence of boron trifluoride etherate gave 3-methoxy-6-methylthio-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)pyrazolo[3,4-d]pyrimidin-4(5H)-one ( 17 ) which, after successive treatments with 3-chloroperoxybenzoic acid and methanolic ammonia, afforded 6-amino-3-methoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4(5H)one ( 18 ). The guanosine analog, 6-amino-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidine-3,4(2H,5H)-dione ( 21 ), was made by sodium iodide-chlorotrimethylsilane treatment of 6-amino-3-methoxy-1-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)pyrazolo[3,4-d]pyrimidin-4(5H)one ( 19 ), followed by sugar deprotection. Treatment of the adenine analog, 4-amino-1H-pyrazolo[3,4-d]pyrimidin-3(2H)-one ( 11 ), according to the high temperature glycosylation procedure yielded a mixture of N-1 and N-2 ribosyl-attached isomers. Deprotection of the individual isomers afforded 4-amino-3-hydroxy-1-βribofuranosylpyrazolo-[3,4-d]pyrimidine ( 26 ) and 4-amino-2-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-3(7H)-one ( 27 ). The structures of 26 and 27 were established by single crystal X-ray diffraction analysis. The inosine analog, 1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidine-3,4(2H,5H)-dione ( 28 ), was synthesized enzymatically by direct ribosylation of 1H-pyrazolo[3,4-d]pyrimidine-3,4(2H,5H)-dione ( 8 ) with ribose-1-phosphate in the presence of purine nucleoside phosphorylase, and also by deamination of 26 with adenosine deaminase.  相似文献   

15.
The reaction of 4-chloro-5-cyano-2-methylthiopyrimidine (I) with ethyl mercaptosuccinate (II) in refluxing ethanol containing sodium carbonate has afforded diethyl 3-amino-2-(methyl-thio)-7H-thiopyrano[2,3-d]pyrimidine-6,7-dicarboxylate (IV). Displacement of the methylthio group in IV with hydrazine gave the corresponding hydrazino derivative which underwent Schiff base formation with benzaldehyde or 2,6-dichlorobenzaldehyde. Treatment of IV in refluxing acetic anhydride afforded the corresponding diacetylated amino derivative. Partial saponification of IV with sodium hydroxide gave 5-amino-2-(methylthio)-7H-thiopyrano-[2,3-d]pyrimidine 6,7-dicarboxylic acid 6 ethyl ester (VIII). The reaction of 4-amino-6-chloro-5-cyano-2-phenylpyrirnidine (XI) with II resulted in the formation of ethyl 4-amino-6-(ethoxy-carbonyl)-5,6-dihydro-5-amino-2-phenylthieno[2,3-d]pyrimidine-6-acetate (XIII) which when subjected to hydrolysis gave ethyl 4,5-diamino-2-phenylthieno[2,3-d]pyrimidine-6-acetate isolated as the hydrochloride (XIV). Diazotization of IV with sodium nitrite in acetic acid unexpectedly afforded diethyl 5-(acetyloxy)-6,7-dihydro-6-hydroxy-2-(methylthio)-5H-thio-pyrano[2,3-d]pyrimidine-6,7-diearboxylate (XV). Several structural ambiguities were resolved by ir and pmr spectra.  相似文献   

16.
Aldehyde could undergo not only the subsequent condensation and cyclization with 2-aminothiophene-3-carboxamide to build a pyrimidine ring, but also a Friedel-Crafts alkylation reaction with thiophene moiety to give unexpected 6-benzyl-2-arylthieno[2,3-d]pyrimidin-4(3H)- ones in good yields catalyzed by concentrated HCl.  相似文献   

17.
3H-benzothieno[3,2-d]pyrimidin-4-one (3) was synthesized by bimolecular cyclising the 3-amino-2-carbethoxybenzothiophene (1) with formamide. The electrophilic substituion of 3 afforded N-methylated lactam derivavtives, the structure of which was assigned by 'H nmr and unequivocal synthesis. The sysnthesis of benzothieno[3,2-d]pyrimidine (7) was achieved by desulphurization of the 3H-benzothieno[3,2-d]-[3,2-d]pyrimisine-4-thione (6) or by oxydation of the 4-hydrazinobenzothieno[3,2-d]primidine (5).  相似文献   

18.
A multistep synthesis of ethyl 5-amino-2-methyIpyridine-4-carboxylate (5a) starting from ethyl acetopyruvate and nitroacetamide is described. The condensation of 5a with benzoylcyanamide gave 2-amino-3-benzoyl-6-methylpyrido[3,4-d]pyrimidin-4(3H) one (10), which could be hydrolyzed in alkali to give 2-amino-4-hydroxy-6-methylpyrido[3,4-d]pyrimidine (9). Free radical bromination of 10 in bromotrichloromethane gave a mixture of the bromo- and chloromethyl- derivatives (11). Fusion of 11 with ethyl p-aminobenzoate, followed by alkaline hydrolysis gave the corresponding pteroic acid analog (12).  相似文献   

19.
Libraries of skeletally diverse potential bioactive polycyclic/spirocyclic heterocyclic compounds; 2-amino-7,9-dimethyl-5-oxo-4-aryl-4,5,6,7-tetrahydropyrano[2,3-d]pyrazolo[3,4-b]pyridine-3-carbonitrile, 2′-amino-7′,9′-dimethyl-2,5′-dioxo-6′,7′-dihydro-5′H-spiro[indoline-3,4′-pyrano[2,3-d]pyrazolo[3,4-b]pyridine]-3′-carbonitrile, and 5,5′-(arylmethylene)bis(4-hydroxy-1,3-dimethyl-1H-pyrazolo[3,4-b]pyridin-6(7H)-one) have been synthesized through a multi-component reaction using novel heterocyclic active methylene compound 4-hydroxy-1,3-dimethyl-1H-pyrazolo[3,4-b]pyridine-6(7H)-one as one of the building blocks. This protocol can be considered to be an efficient and eco-friendly strategy for diversity oriented synthesis.  相似文献   

20.
The reaction of N-arylcyanamides with thiophene o-aminonitriles under the influence of dry hydrogen chloride gas yields a mixture of two products. The major product has been identified as 2-amino-3-aryl-4-iminothieno[2,3-d]pyrimidine and the minor as 2-amino-3-arylthieno[2,3-H]pyrimidin-4(3H)-one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号