首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Pulse radiolysis technique has been employed to study the reactions of oxidizing (OH, N3) and reducing radicals (eaq, CO2√−, acetone ketyl radical) with 2-hydroxy-3-methoxybenzaldehyde (o-vanillin) at different pH. Hydroxyl radicals react mostly by addition reaction forming radical adducts (λmax=420 nm) and the oxidation is only a minor process even in the alkaline region. The reaction with azide radicals produced phenoxyl radicals (λmax=340 nm), which are formed on fast deprotonation of solute radical cation. Using PMZ√+/PMZ and ABTS√−/ABTS2− as the reference couple, different methods are employed to determine the one-electron reduction potential of o-vanillin and the average value is estimated to be 1.076±0.004 V vs. NHE at pH 6. The phenoxyl radicals of o-vanillin were able to oxidize ABTS2− quantitatively. The eaq is observed to react with o-vanillin with rate constant value of 2×1010 dm3 mol−1 s−1. CO2√− and acetone ketyl radical are also observed to react with o-vanillin by electron transfer mechanism and showed the formation of transient absorption bands with λmax at 350 and 390 nm at pH 4.5 and 9.7, respectively. The pKa of the one-electron reduced species was determined to be 8.1. The results indicate that the aldehydic group is the most preferred site for electron addition.  相似文献   

2.
The reactions of hydroxyl radical, hydrogen atom and hydrated electron intermediates of water radiolysis with N-isopropylacrylamide (NIPAAm) were studied by pulse radiolysis in dilute aqueous solutions. OH, H and eaq react with NIPAAm with rate coefficient of (6.9±1.2)×109, (6.6±1)×109, and (1.0±0.2)×1010 mol−1 dm3 s−1. In OH and H radical addition to the double bond mainly -carboxyalkyl type radicals form, (OHCH2CHC(N-i-C3H7)O and CH3CHC(N-i-C3H7)O). In reaction of eaq oxygen atom centered radical anion is produced (CH2CHC(N-i-C3H7)O), the anion undergoes reversible protonation with pKa=8.7. There is also an irreversible protonation on the β-carbon atom that produces the same radical as forms in H atom reaction (CH3CHC(N-i-C3H7)O). The -carboxyalkyl type radicals at low NIPAAm concentration (0.1–1 mmol dm−3) mainly disappear in self-termination reactions, 2kt,m=8.4×108 mol−1 dm3 s−1. At higher concentrations the decay curves reflect the competition of the self-termination and radical addition to monomer (propagation). The termination rate coefficient of oligomer radicals containing a few monomer units is 2kt≈2×108 mol−1 dm3 s1.  相似文献   

3.
Free radical reactions of dehydrozingerone (DZ), a methoxy phenol, were studied at dfferent pHs with a variety of oxidants using nanosecond pulse radiolysis technique. Hydroxyl radical (OH) reaction with the phenolic form at pH 6 led mainly to the formation of an OH-adduct absorbing at 460 nm in addition to a minor oxidation product. On the other hand, at pH 10 with the deprotonated phenoxide ion, the only reaction observable was oxidation generating a phenoxyl radical absorbing at 360 nm. HPLC analysis indicated formation of two different products at pH 6 from addition and oxidation reactions, whereas at pH 10, only the oxidation product was detectable. Reactions of more specific secondary oxidizing radicals, N3√, Br√, Br2√ and Tl(II) with DZ gave rise to the phenoxyl radical over the entire pH range. DZ in the phenoxide ion form reacted with nitrogen dioxide and trichloromethyl peroxyl radicals with rate constants 6×108 and 8.8×108 dm3 mol−1 s−1 respectively leading to the phenoxyl radicals. The DZ phenoxyl radical reacted with trolox C (an analogue of -tocopherol) with a rate constant of 8.3×107 dm3 mol−1 s−1. One electron reduction potential of the DZ phenoxyl radical at pH 6 was determined to be +1.1 V vs NHE using N3√/N3 as the standard couple.  相似文献   

4.
The one-electron oxidation of Mitomycin C (MMC) as well as the formation of the corresponding peroxyl radicals were investigated by both steady-state and pulse radiolysis. The steady-state MMC-radiolysis by OH-attack followed at both absorption bands showed different yields: at 218 nm Gi (-MMC) = 3.0 and at 364 nm Gi (-MMC) = 3.9, indicating the formation of various not yet identified products, among which ammonia was determined, G(NH3) = 0.81. By means of pulse radiolysis it was established a total κ (OH + MMC) = (5.8 ± 0.2) × 109 dm3 mol−1 s−1. The transient absorption spectrum from the one-electron oxidized MMC showed absorption maxima at 295 nm (ε = 9950 dm3 mol−1 cmt-1), 410 nm (ε = 1450 dm3 mol−1 cm−1) and 505 nm ( ε = 5420 dm3 mol−1 cm−1). At 280–320 and 505 nm and above they exhibit in the first 150 μs a first order decay, κ1 = (0.85 ± 0.1) × 103 s−1, and followed upto ms time range, by a second order decay, 2κ = (1.3 ± 0.3) × 108 dm3 mol-1 s−1. Around 410 nm the kinetics are rather mixed and could not be resolved.

The steady-state MMC-radiolysis in the presence of oxygen featured a proportionality towards the absorbed dose for both MMC-absorption bands, resulting in a Gi (-MMC) = 1.5. Among several products ammonia-yield was determined G(NH3) = 0.52. The formation of MMC-peroxyl radicals was studied by pulse radiolysis, likewise in neutral aqueous solution, but saturated with a gas mixture of 80% N2O and 20% O2. The maxima of the observed transient spectrum are slightly shifted compared to that of the one-electron oxidized MMC-species, namely: 290 nm (ε = 10100 dm3 mol−1 cm−1), 410 nm (ε = 2900 dm3 mol−1 cm−1) and 520 nm (ε = 5500 dm3 mol−1 cm−1). The O2-addition to the MMC-one-electron oxidized transients was found to be at 290 to 410 nm gk(MMC·OH + O2) = 5 × 107 dm3 mol−1 s−1, around 480 nm κ = 1.6 × 108 dm3 mol−1 s−1 and at 510 nm and above, κ = 3 × 108 dm3 mol−1 s−1. The decay kinetics of the MMC-peroxyl radicals were also found to be different at the various absorption bands, but predominantly of first order; at 290–420 nm κ1 = 1.5 × 103 s−1 and at 500 nm and above, κ = 7.0 × 103 s−1.

The presented results are of interest for the radiation behaviour of MMC as well as for its application as an antitumor drug in the combined radiation-chemotherapy of patients.  相似文献   


5.
The rate constant for the reaction between the sulphate radical (SO4√−) and the ruthenium (II) tris-bipyridyl dication (Ru(bipy)32+) is (3.3±0.2)×109 mol−1 dm3 s−1 in 1 mol dm−3 H2SO4 and (4.9±0.5)×109 mol−1 dm3 s−1 in 0.1 mol dm−3, pH 4.7 acetate buffer. The SO4√−radical produced by the electron transfer quenching of Ru(bipy)32+* by S2O82− reacts rapidly with both acetate buffer and chloride ions. These side reactions result in a reduction in the overall quantum yield of Ru(bipy)33+ production and reduced reaction selectivity when Ru(bipy)32+* is quenched by persulphate.  相似文献   

6.
Pulse radiolysis of epicatechin in aqueous solution has been done to investigate the reactions of epicatechin derived phenoxy radical (EpO) at neutral pH. EpO was generated by N3 reacting toward EpOH, the rate constant was measured to be 3 × 108 dm3 mol−1 s−1. The biomolecular termination of EpO is rather slow ((2k < × 106 dm3 mol−1 s−1) and results in products exhibiting strong visible absorption around 450 nm. No reactions have been observed for EpO with O2 and O2 in the time scale of pulse radiolysis (0.01 s), suggesting the bimolecular rate constant are less than 104 and 5 × 106 dm3 mol−1 s−1, respectively.  相似文献   

7.
The self-termination rates of the benzyl radical (C6H5---CH2) and para-substituted benzyl radicals (X---C6H4---CH2) were studied in aqueous solutions. The Arrhenius parameters and activation energies were determined in the temperature range 275.5–328 K. The kinetic activation energies of these radicals were close to the dynamic activation energy of the solvent, indicating that the termination rate is controlled by diffusion. The values for the rate constants (2kt (109 dm3 mol−1 s−1)) and the activation energies (E (kJ mol−1)) were 5.94±0.52 and 14.69±0.61 for CH3O---C6H4---CH2, 4.52±0.2 and 17.65±1.16 for CH37z.sbnd;C6H4---CH2, 3.07±0.45 and 17.58±0.97 for H---C6H4---CH2, 4.13±0.81 and 19.10±1.20 for Cl---C6H4---CH2 and 4.17±0.44 and 14.62±0.52 for NO2---C6H4---CH2.  相似文献   

8.
Photo-oxidations of environmental organics in illuminated TiO2 dispersions have implicated surface-bound OH radicals and/or valence band holes. To explore the implications of the former oxidizing entity, six isomeric xylenols (dimethylphenols) were examined by pulsed (nanoseconds to milliseconds) radiolysis methods. The spectral and kinetic characteristics of formation and decay of the transients formed by the reaction of N3, OH and H radicals with these xylenols were assessed in buffered (pH 4, 10−3 M phosphate) aqueous media, where the xylenols exist in their protonated form (pK ≈ 10.19–10.65). The products from the reaction of N3 with 2,6- and 3,4-xylenol were exclusively the corresponding dimethylphenoxyl radicals, formed via electron transfer followed by deprotonation. In contrast, except with 3,4-xylenol, the principal radical intermediates formed initially upon reaction with OH were the corresponding OH adducts, the dihydroxydimethylcyclohexadienyl radicals. 3,4-Xylenol was examined in the pH range 4–10. At pH 8 the initial OH adduct (dihydroxy-3,4-dimethylcyclohexadienyl radical) was subsequently transformed (about 20%–40%) via water elimination into the dimethylphenoxyl radical. In contrast, at pH 9 and 10 the OH adduct and the dimethylphenoxyl radical were formed concurrently (about 60% OH adduct and about 40% dimethylphenoxyl species), the latter through an inner-sphere electron transfer pathway. The switch in behaviour from pH 8 to pH 9 suggests that the pKa of the dihydroxy-3,4-dimethylcyclohexadienyl radical is about 8–9, about 2 pK units below the pKa of the parent substrate (10.4). A mechanism for the conversion of the OH adduct to the dimethylphenoxyl radical is proposed. Reaction of 2,6-xylenol with H radicals gave exclusively the H adduct (hydroxycyclohexadienyl radical), whose spectral characteristics are similar to those of the related OH adduct.  相似文献   

9.
The oxidation reaction of 2-aminophenol (OAP) to 2-aminophenoxazin-3-one (APX) initiated by 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) has been investigated in methanol at ambient temperature. The oxidation of OAP was followed by electronic spectroscopy and the rate constants were determined according to the rate law −d[OAP]/dt=kobs[OAP][TEMPO]. The rate constant, activation enthalpy and entropy at 298 K are as follows: kobs (dm3 mol−1 s−1)=(1.49±0.02)×10−4, Ea=18±5 kJ mol−1, ΔH=15±4 kJ mol−1, ΔS=−82±17 J mol−1 K−1. The results of oxidation of OAP show that the formation of 2-aminophenoxyl radical is the key step in the activation process of the substrate.  相似文献   

10.
Two new procedures were employed for studying the reaction of hydrogen atoms with hydrogen peroxide. The absorption in the UV-range was observed either for an acidic aqueous solution containing only hydrogen peroxide or for a similar solution but also containing an aliphatic alcohol. From the increase in absorption of various alcohol radicals, a rate constant of 3.5×107 dm3 mol−1 s−1 was determined. In addition, the rate constant for the reaction of hydroxyl radicals with hydrogen peroxide was determined to be 3.0×107 dm3 mol−1 s−1.  相似文献   

11.
The reactions of two triphenyl methane (TPM) dyes—crystal violet (CV+) and malachite green (MG+)—with N3 and OH radicals were studied by pulse radiolytic kinetic spectrophotometry. The rate constants for the reaction of the cationic dyes (D+) with N3 are (9.0±0.6)×109 and (3.0±0.2)×109 dm3 mol−1 s−1 respectively and those for the reaction with OH are obtained as (8.0±0.6)×109 and (1.1±0.1)×109 dm3 mol−1 s−1 respectively. The transient spectra resulting from the oxidation of the dyes were characterized. The time-resolved spectra indicate that the reaction with OH radicals initially generates an adduct which subsequently dissociates to form the radical dication D•2+. The D•2+ species decay by further reaction with the parent dye.  相似文献   

12.
Using N3 species as specific electron acceptor a defined ascorbate radical: AH↔A+H+max=360 nm, =3400 dm3 mol−1 cm−1) is observed. The attack of DMSO+ on vit.E results in a vit.E radical (k=1×109 dm3 mol−1 s−1; λmax=425 nm, =2400 dm3 mol−1 cm−1; 2k=4.7×108 dm3 mol−1 s−1). Vit.E-acetate leads to the formation of a radical cation (vit.E-ac+). β-carotene reacts also with DMSO+ forming a radical cation, β-car+ (k=1.75×108 dm3 mol−1 s−1; λmax=942 nm, =14 600 dm3 mol−1 cm−1), which probably leads to the formation of a dimer radical cation, (β-car)+2 (k=2.5×107 dm3 mol−1 s−1).

Using E.coli bacteria (AB1157) as a model system in vitro it was found that all three vitamins are rather efficient radiation protecting agents. They can also increase the activity of cytostatica, e.g., mitomycin C (MMC), by electron transfer process. The mixture of vit.E-ac and β-car acts contradictory, but adding vit.C to it a strong cooperative enhancement of the MMC activity is observed once again. A relationship between the pulse radiolysis and the radiation biological data is found and discussed. A possible explanation of the previously reported trials concerning the role of vit.E and β-car on the increased occurence of lung and other types of cancer in smokers and drinkers is presented.  相似文献   


13.
Kudo Y  Usami J  Katsuta S  Takeda Y 《Talanta》2003,59(6):1213-1218
Ion-pair formation constants (KMLA mol−1 dm3) of Na+– and K+–18-crown-6 ether (18C6) complexes with MnO4 in water (w) were determined potentiometrically at 25 °C. Simultaneously, extraction constants (Kex mol−2 dm6) of the permanganates with 18C6 from w into 1,2-dichloroethane at 25 °C were obtained from the spectrophotometric determination of distribution ratios of the permanganates. These Kex values were divided into KMLA and other three component equilibrium constants and thereby extraction-selectivity and -ability were discussed in comparison with corresponding metal picrate–18C6 extraction systems reported before.  相似文献   

14.
The photoinduced electron transfer reactions of the triplet state of rose bengal (RB) and several electron donors were investigated by the complementary techniques of steady state and time-resolved electron paramagnetic resonance (EPR) and laser flash photolysis (LFP). The yield of radicals varied with the light fluence rate, RB concentration and, in particular, the electron donor used. Thus for L-dopa (dopa, dihydroxyphenylalanine) only 10% of RB anion radical (RB√−) was produced, with double the yield observed with NADH (NAD, nicotinamide adenine dinucleotide) as quencher and more than three times the yield observed with ascorbate as quencher. Quenching of the RB triplet was both reactive and physical with total quenching rate constants of 4 × 108 mol−1 dm3 s−1 and 8.5 × 108 mol−1 dm3 s−1 for ascorbate and NADH respectively. The rate constant for the photoinduced electron transfer from ascorbate to RB triplet was 1.4 × 108 mol−1 dm3 s−1 as determined by Fourier transform EPR (FT EPR). FT EPR spectra were spin polarized in emission at early times indicating a radical pair mechanism for the chemically induced dynamic electron polarization. Subsequent to the initial electron transfer production of radicals, a complex series of reactions was observed, which were dominated by processes such as recombination, disproportionation and secondary (bleaching) reactions.

It was observed that back electron transfer reactions could be prevented by mild oxidants such as ferric compounds and duroquinone, which were efficiently reduced by RB√−.  相似文献   


15.
The spectral characteristics of the bimetallic sols produced by gamma and electron irradiation of mixed solutions of Tl+–Cu2+ ions in different ratios have been studied in aqueous medium. The intermediate transient species have also been characterized by the technique of pulse radiolysis. The rate constant for the reaction of Cu2+ion with the Tl+ ion reduction species was founded by 4×109 dm3 mol−1s−1. Developmental absorption spectra in gamma radiolytic reduction of the mixed ions indicated reduction of Tl+ ion on the surface of small copper particles, resulting in bimetallic-sol with core of copper. The presence of a small concentration of Cu2+ ion was found to restrict the agglomeration process of thallium particles at near neutral pH conditions. The reducing capability of the bimetallic sols was found to be proportional to the thallium content in the sol. The observed UV–Vis spectra of the mixed Tl/Cu sols produced on electron irradiation showed much lower absorption in the higher wavelength region and were more close to that of the pure sol of the ion, present in higher concentration in the feed solution. Thus, the high dose rate-assisted stabilization of smaller thallium particles. Size of all these bimetallic sol particles was much less than 50 nm.  相似文献   

16.
Y. Shingaya  M. Ito   《Chemical physics letters》2001,340(5-6):425-430
Temperature dependence studies of adsorption of sulfuric acid species on Pt(1 1 1) and Au(1 1 1) electrodes were carried out using in situ infrared reflection absorption spectroscopy. A temperature-dependent shift of the interconversion potential between HSO4/H3O+ and H2SO4 on a Pt(111) electrode was observed. A temperature-dependent frequency shift of the absorption bands of HSO4 was also observed on both Pt(1 1 1) and Au(1 1 1) electrodes in the potential region where a √3×√7 structure evolved. Modelling experiments in ultrahigh vacuum revealed that ordering of the overlayer water molecules played an important role in the frequency of the absorption bands of HSO4.  相似文献   

17.
Twenty-two isomers/conformers of C3H6S+√ radical cations have been identified and their heats of formation (ΔHf) at 0 and 298 K have been calculated using the Gaussian-3 (G3) method. Seven of these isomers are known and their ΔHf data are available in the literature for comparison. The least energy isomer is found to be the thioacetone radical cation (4+) with C2v symmetry. In contrast, the least energy C3H6O+√ isomer is the 1-propen-2-ol radical cation. The G3 ΔHf298 of 4+ is calculated to be 859.4 kJ mol−1, ca. 38 kJ mol−1 higher than the literature value, ≤821 kJ mol−1. For allyl mercaptan radical cation (7+), the G3 ΔHf298 is calculated to be 927.8 kJ mol−1, also not in good agreement with the experimental estimate, 956 kJ mol−1. Upon examining the experimental data and carrying out further calculations, it is shown that the G3 ΔHf298 values for 4+ and 7+ should be more reliable than the compiled values. For the five remaining cations with available experimental thermal data, the agreement between the experimental and G3 results ranges from fair to excellent.

Cation CH3CHSCH2+√ (10+) has the least energy among the eleven distonic radical cations identified. Their ΔHf298 values range from 918 to 1151 kJ mol−1. Nevertheless, only one of them, CH2=SCH2CH2+√ (12+), has been observed. Its G3 ΔHf298 value is 980.9 kJ mol−1, in fair agreement with the experimental result, 990 kJ mol−1.

A couple of reactions involving C3H6S+√ isomers CH2=SCH2CH2+√ (12+) and trimethylene sulfide radical cation (13+) have also been studied with the G3 method and the results are consistent with experimental findings.  相似文献   


18.
The one-electron reduction of 4,7-phenanthroline (P) in aqueous solutions at neutral pH has been further studied by pulse radiolysis. The spectral and kinetic properties of the transient formed due to the reaction of 4,7-phenanthroline with hydrated electron were investigated. The transient absorption spectrum obtained 5μs after the pulse exhibits a broad band with a λmax at 420 nm. The λmax is 10 nm blue shift compared with the absorption spectrum obtained at pH 2.9 where the reactant was the protonated form. The bimolecular'rate constant of the reaction of 4,7-phenanthroline with hydrated electron was 0etermined to be (2.2±0.1)×1010 dm3 mol−1 s−1. It was found that the decay of the transient was mainly following a first-order kinetics. The first-order decay rate constant was determined to be (1.25±0.1)×104s−1.  相似文献   

19.
The activity of enzyme I (EI), the first protein in the bacterial PEP:sugar phosphotransferase system, is regulated by a monomer–dimer equilibrium where a Mg2+-dependent autophosphorylation by PEP requires the homodimer. Using inactive EI(H189A), in which alanine is substituted for the active-site His189, substrate binding effects can be separated from those of phosphorylation. Whereas 1 mM PEP (with 2 mM Mg2+) strongly promotes dimerization of EI(H189A) at pH 7.5 and 20 °C, 5 mM pyruvate (with 2 mM Mg2+) has the opposite effect. A correlation between the coupling of N- and C-terminal domain unfolding, measured by differential scanning calorimetry, and the dimerization constant for EI, determined by sedimentation equilibrium, is observed. That is, when the coupling between N- and C-terminal domain unfolding produced by 0.2 or 1.0 mM PEP and 2 mM Mg2+ is inhibited by 5 mM pyruvate, the dimerization constant for EI(H189A) decreases from >108 to <5 × 105 or 3 × 107 M−1, respectively. With 2 mM Mg2+ at 15–25 °C and pH 7.5, PEP has been found to bind to one site/monomer of EI(H189A) with KA′106 M−1G′=−33.7±0.2 kJ mol−1 and ΔH=+16.3 kJ mol−1 at 20 °C with ΔCp=−1.4 kJ K−1 mol−1). The binding of PEP to EI(H189A) is synergistic with that of Mg2+. Thus, physiological concentrations of PEP and Mg2+ increase, whereas pyruvate and Mg2+ decrease the amount of dimeric, active, dephospho-enzyme I.  相似文献   

20.
The early stages of the polymerization of 2-[(methacryloyloxy)ethyl]trimethyl ammonium chloride (MADQUAT) in aqueous solution were studied by pulse radiolysis. The rate constant of the reaction of this monomer with OH√ and hydrated electron was measured as 1.5×1010 and 2.2×1010 dm3mol−1s−1, respectively. The absorption spectrum of the OH√ adduct to MADQUAT molecule appeared to have a maximum at 290 nm. Its decay depends on the monomer concentration. The shape and maximum of the absorption spectrum of electron adduct to the monomer depend on pH of the solution. In acidic solution, radical anion is formed. It subsequently undergoes reversible protonation giving spectrum with a maximum below 260 nm. In basic solution the spectrum has a maximum at 290 nm. In this case irreversible protonation takes place at the β-carbon atom, giving an -centred carbon radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号