首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
An emulsion polymerization system with uniform continuous addition of vinyl acetate monomer, Pluronic F68 surfactant, and persulfate initiator has been examined with variation of the surfactant concentration over a tenfold range. The particle surface area per unit weight of emulsion was found to vary directly as the surfactant/monomer ratio, as also did the emulsion viscosity. At constant polymer/emulsion weight the number of particles per unit emulsion weight varied directly as the cube of the surfactant concentration. It is shown that these relationships apply also to other monomers, such as styrene and methacrylate esters. The solubility of vinyl acetate in a range of Pluronic F68 aqueous solutions was determined, and it was shown that the rate of polymerization is dependent on the solubility of the monomer in the surfactant solution. It is concluded that when a water-soluble initiator is used, polymerization proceeds in the aqueous phase. The principal factors controlling the rate of polymerization in the emulsion polymerization of vinyl acetate are, consequently, the initiating system and the concentration of monomer in the aqueous phase. Solubilization characteristics indicate that the surfactant concentration will have a much greater effect on the less water-soluble monomers, such as styrene, than on the more soluble ones, such as vinyl acetate.  相似文献   

2.
This paper describes the radical graft polymerization of vinyl monomers from glass fiber surface initiated by alkylazo groups introduced onto the fiber surface. The introduction of azo groups onto the glass fiber surface was achieved by reaction of isocyanate groups which were previously attached onto the surface with two kinds of azo initiators, 4,4′-azobis(4-cyanopentanoic acid) (ACPA) and 2,2′-azobis(2-cyanopropanol) (ACP). The amounts of surface azo groups introduced by ACPA and ACP were both determined to be 1.3 × 10−5 mol g−1 by nitrogen analysis. The radical graft polymerization of methyl methacrylate (MMA) was found to be initiated in the presence of the glass fiber having surface azo groups. During the polymerization, part of resultant poly(MMA) grafted onto the fiber surface through propagation of the polymer from the surface radicals produced by the decomposition of the azo groups. The percentage of grafting of poly(MMA) reached 48.1% after 24 h. The graft polymerizations of other monomers, such as styrene, N-vinylcarbazole, and acrylic acid, were also initiated by the surface azo groups, and the corresponding polymer effectively grafted onto the surface. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2121–2128, 1999  相似文献   

3.
A novel catalytic method for carrying out the cationic polymerizations has been developed based on a redox initiator system in which the reducing component is delivered to the reaction mixture in the vapor state. The redox couple consists of a diaryliodonium salt that is dissolved in the monomer and a noble metal catalyst is added. The silane reducing agent is introduced to the reaction mixture in the vapor state using air as the carrier gas. Reduction of the diaryliodonium salt by the silane results in the liberation of a Brønsted superacid that initiates cationic polymerizations. A study of the effects of variations in the structures of the diaryliodonium salt, the silane, and the type of noble metal catalyst was carried out. In principle, the initiator system is applicable to all types of cationically polymerizable monomers and oligomers including: the ring‐opening polymerizations of such heterocyclic monomers as epoxides and oxetanes and, in addition, the polymerization of vinyl ether monomers such as vinyl ethers. The use of this initiator system for carrying out commercially attractive cross‐linking polymerizations for coatings, composites, and encapsulations is discussed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1825–1835, 2009  相似文献   

4.
A stereochemical scheme of propagation was proposed for polymerizations of vinyl and related monomers by Friedel-Crafts catalysts. For the cationic propagation proceeding via the simple carbonium ion pair, the following two factors were considered to be of primary importance in determining the steric course of propagation: (1) the conformation of the last two units of the propagating polymer segment and the direction of approach of the incoming monomer; (2) the tightness of the growing ion pair. Thus, the front-side (less hindered site) attack to the carbonium ion gives rise to a syndiotactic placement and the back-side attack an isotactic placement. The present model can satisfactorily explain the effects of substituents, catalysts, polymerization media, and polymerization temperature on the steric structure of polymers in cationic polymerization of vinyl ethers. Extension of the scheme to polymerization of the β-substituted vinyl ethers in nonpolar solvents predicts formation of the diisotactic structures consistent with the experimental result. The influences of the polymerization condition on the steric structure of polymer were studied for cationic polymerizations of α-methylstyrene at low temperatures. Highly syndiotactic polymers were obtained for homogeneous reactions in toluene-rich media. The isotactic unit increased by increasing the content of methylcyclohexane in the solvent mixture. The effect of catalysts, though insignificant in toluene-rich media, was clearly noted in methylcyclohexane-rich media, less active catalysts (e.g., SnCl4) yielding higher amounts of the isotactic unit than more active catalysts (e.g., AlCl3). These results can be readily accommodated in the present model.  相似文献   

5.
Addition polymerizations of both acyclic and cyclic monomers show the characteristic features of any aggregation process, in particular, a ceiling temperature above which the formation of the aggregate (long‐chain polymer), under given conditions of monomer concentration, solvent, and pressure, would involve a positive change of free energy and is therefore impossible. Conversely, for a given temperature, pressure, and solvent, there is an equilibrium monomer concentration below which long‐chain polymer cannot be formed. Monomers must therefore have a negative free energy of polymerization, under given conditions, if they are to be capable of undergoing a significant extent of polymerization. The effect of monomer structure, including ring size, on thermodynamic polymerizability is discussed, as well as the possibility of copolymerizing monomers that cannot themselves give homopolymers. Examples are given for various possible mechanisms of polymerization. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2137–2146, 2000  相似文献   

6.
Polymerizations of some vinyl monomers were carried out with 2,2′-azobisisobutyronitrile at 60°C in the presence of a methyl methacrylate (MMA) dimer ( I ) or a MMA polymer ( II ) with a double bond at their ends to confirm the polymerization reactivity of unsaturated end group generated during the disproportionation in termination reaction of MMA polymerization. It was found that the polymerizations of α-monosubstituted monomers have been much retarded than those of α,α-disubstituted monomers by the addition of I . Kinetic study on MMA and methyl acrylate polymerizations showed that the rate constant for the reaction of a propagating radical with I was 5.4 and 29.2 L/mol s in their polymerizations, respectively. ESR study using I and II suggested that an addition reaction was a predominant mechanism for the reaction of an unsaturated end group with a radical rather than a hydrogen abstraction.  相似文献   

7.
Enzymatic polymerization denotes an in vitro polymerization via nonbiosynthetic pathways catalyzed by an isolated enzyme. This article describes the recent progress of this polymerization technique, developed mainly during this decade. The polymerization utilizes enzymes of hydrolases and oxidoreductases as catalysts. This new method of polymer synthesis provided natural polysaccharides like cellulose, amylose, xylan, and chitin, and unnatural polysaccharides catalyzed by a glycosidase from well-designed monomers, various functionalized polyesters catalyzed by lipase from a variety of monomers, and polyaromatics materials catalyzed by an oxidoreductase and an enzyme model complex from phenols and anilines. An oxidoreductase also initiated vinyl polymerizations. Characteristic features of enzymatic polymerizations are discussed, including the importance of the combination of substrate monomer and enzyme. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3041–3056, 1999  相似文献   

8.
The results of quantitative studies of the rates of free-radical polymerization of vinyl ferrocene indicate that the latter has polymerization characteristics similar to those of styrene. The rates of homopolymerization of these two monomers in benzene at 70°C. were measured with the use of azobisisobutyronitrile as catalyst. The rate constants (k = Rp/[M][I]1/2) are kVF = (1.1 ? 1.8) × 10?4, kSTY = 1.65 × 10?4. Small amounts of vinyl ferrocene and styrene have similar effects on the rates of polymerizations of methyl methacrylate and ethyl acrylate and on the molecular weights of the resulting polymer. Polystyrene and poly(vinyl ferrocene) with similar molecular weights are isolated from polymerizations carried out under identical conditions. The rates of copolymerization of vinyl ferrocene—methyl methacrylate, vinyl ferrocene—styrene, and styrene—methyl methacrylate were determined by following the disappearance of monomers by means of gas chromatographic analyses. The relative reactivity for vinyl ferrocene is slightly lower than that for styrene.  相似文献   

9.
There has been a kinetic examination of the polymerization of acrylic acid in dilute aqueous solution in the presence of copolymers of vinyl pyrrolidone with acrylamide or styrene. In general, the characteristics of the polymerizations are very similar to those found in the presence of polyvinyl pyrrolidone homopolymer, but the definite differences, taken in conjunction with gravimetric data on the polymer complexes, can be explained by the fact that acrylamide is hydrophilic while styrene is hydrophobic. The use of the copolymers has permitted an assessment of the effect of dilution of monomer adsorbed on the interacting polymer.  相似文献   

10.
The inherent differences in reactivity between activated and non‐activated alkenes prevents copolymerization using established polymer synthesis techniques. Research over the past 20 years has greatly advanced the copolymerization of polar vinyl monomers and olefins. This Review highlights the challenges associated with conventional polymerization systems and evaluates the most relevant methods which have been developed to “bridge the gap” between polar vinyl monomers and olefins. We discuss advancements in heteroatom tolerant coordination–insertion polymerizations, methods of controlling radical polymerizations to incorporate olefinic monomers, as well as combined approaches employing sequential polymerizations. Finally, we discuss state‐of‐the‐art stimuli‐responsive systems capable of facile switching between catalytic pathways and provide an outlook towards applications in which tailored copolymers are ideally suited.  相似文献   

11.
The radical polymerization of vinyl chloride was investigated at 60°C under high pressure up to 5000 bar in benzaldehyde, benzonitrile, toluene, heptane, cyclohexane, and dioxane as solvent. In benzaldehyde and benzonitrile, the polymerizations were depressed by increased pressure. This unusual behavior was explained by the solvent participation and the effect of pressure on the propagating radicals. The crystallinities of polymer obtained in all solvents decreased with increasing pressure, as judged by the absorbance ratio of the infrared spectra. However the effects of pressure on the absorbance ratio of the polymer obtained in benzaldehyde and benzonitrile were not identical with those in the other solvents. These facts also suggest that both solvents play a special role for the solvent participation in the propagating step.  相似文献   

12.
The gel effect in free radical polymerization of vinyl monomers has been recognized as the result of the increased viscosity of the reaction solution of polymer in monomer, which causes a decrease in the rate of the termination reaction. This effect manifests itself as an increase in the rate of polymerization over that rate to be expected in its absence. Definition of the onset of the gel effect has become necessary for several purposes. Previously, it has been common to define the onset phenomenologically, i.e., in terms of the increase in the rate of polymerization. It is proposed here that the onset of the gel effect is best defined on a fundamental basis, i.e., as occurring at that conversion at which the rate of segmental diffusion of the polymeric radicals equals the rate of their translational diffusion. Experimental evidence is presented that shows that the small minima predicted by this definition do exist for both rates and degrees of polymerization. Measurements of the viscosities of solutions of polymers in their monomers suggest that the polymer concentrations at which the “chain-entanglement” phenomena are observed are the same as those for the onset of the gel effect for styrene, methyl methacrylate, and butyl methacrylate.  相似文献   

13.
Sodium bisulfite–soda lime glass has proved to be a good initiator for polymerization and graft polymerization onto cellulose of some vinyl monomers. A scheme dealing with the mechanism of initiation has been proposed assuming trapping of the bisulfite radical inside the glass frame-work to form a so-called sulfur-impregnated solid. Such a solid has paramagnetic properties and acts on the vinyl monomers and cellulose as any free-radical-producing source thus leading to polymerization and graft polymerization onto cellulose. Other radicals containing sulfur, such as sulfite, sulfate, and persulfate failed to give such property with soda lime glass. With the sodium bisulfite–soda lime glass system the reactivity decreases in the order methyl methacrylate > ethyl acrylate > acrylonitrile which is inconsistent with the arrangement of acceptor monomers with decreasing electron-donating ability. This may reflect interference of the addition reaction which may take place between the monomer and bisulfite and the rate of which may depend on the activation energy of the monomer.  相似文献   

14.
In this work, we report a gas-phase polymerization approach to create end-grafted vinyl based polymer films on silicon oxide based substrates. The "surface-initiated vapor deposition polymerization" (SI-VDP) of vaporized vinyl monomers, via the nitroxide-mediated free radical polymerization mechanism, was developed to fabricate various homo- and block copolymer brushes from surface-bound initiators, 1-(4'-oxa-2'-phenyl-12'-trimethoxysilyldodecyloxy)-2,2,6,6-tetra-methylpiperidine ("TEMPO"). The resulting polymer thin films were characterized by the Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, ellipsometry, and contact angle goniometry, respectively, to identify the surface composition, film thickness, surface coverage, and water contact angles. Through the SI-VDP, end-grafted polymer films of polystyrene (PSt), poly(acrylic acid) (PAAc), poly(N-(2-hydroxypropyl) methacrylamide) (PHPMA), and poly(N-isopropylacrylamide) (PNIPAAm) with 10-200 nm thicknesses were fabricated. Furthermore, the block copolymer films of PAAc (1st block)-b-PSt (2nd block), PSt (1st block)-b-PAAc (2nd block), and a triblock copolymer film of PAAc (1st)-b-PSt (2nd)-b-PHPMA (3rd), were also fabricated, suggesting the "renewability" of the TEMPO-initiated polymerization in the SI-VDP scheme. It is also noticed that the SI-VDP is more efficient than the conventional solution phase polymerization in producing functional polymer brushes such as PNIPAAm, PAAc, or PAAc-b-PSt end-grafted films. In summary, our studies have shown clear advantages of the SI-VDP setup for the nitroxide-mediated polymerization scheme in controlling synthesis of end-grafted homo- and copolymer thin films.  相似文献   

15.
The simultaneous control of the molecular weights and the tacticity was attained even during radical polymerization by the judicious combinations of the living/controlled radical polymerizations based on the fast interconversion between the dormant and active species, and the stereospecific radical polymerizations mediated by the added Lewis acids or polar solvents via the coordination to the monomer/polymer terminal substituents. This can be useful for various monomers including not only conjugated monomers, such as acrylamides and methacrylates, but also nonconjugated ones such as vinyl acetate and N‐vinylpyrrolidone. Stereoblock polymers were easily obtained by the addition of the Lewis acids or by change of the solvents during the living radical polymerizations. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6147–6158, 2006  相似文献   

16.
Various vinyl ethers have been examined as additives during radical polymerizations initiated by azobisisobutyronitrile at 60°C; the monomers were methyl methacrylate (MMA), styrene (STY) and acrylonitrile (AN). For MMA and STY, the vinyl ethers were incorporated to only small extents but they caused reductions in rate of polymerization and chain length of the resulting polymer; the effects can be attributed to the low reactivities in growth reactions of radicals to which a vinyl ether unit was last added. Copolymerization of the vinyl ethers with AN was more evident but, in many cases, it was accompanied by increased rate of consumption of AN and increased chain length of the polymer. These changes can be explained in terms of a physical effect which can be likened to that believed to be responsible for the gel effect. It is considered that polymer radicals are rather tightly coiled in an indifferent solvent so that the normal bimolecular termination is impeded.  相似文献   

17.
The stereospecific radical polymerization of vinyl esters, methacrylates, and alpha-substituted acrylates was studied. Fluoroalcohols, as a solvent, have remarkable effects on the stereoregularity of the radical polymerizations of vinyl acetate, vinyl pivalate, and vinyl benzoate, affording polymers rich in syndiotacticity, heterotacticity, and isotacticity, respectively. This method was successfully applied to the polymerization of methacrylates to give syndiotactic polymers. The steric repulsion between the entering monomer and the chain-end monomeric unit bound by the solvent through hydrogen bonding is important for the stereochemical control in these systems. Lewis acid catalysts, such as lanthanide trifluoromethanesulfonates and zinc salts, were also effective for the stereocontrol during the radical polymerization of methyl methacrylate, to reduce the syndiotacticity and alpha-(alkoxymethyl)acrylates to synthesize isotactic and syndiotactic polymers. Radical polymerization of the methacrylates bearing a bulky ester group, such as the triphenylmethyl methacrylate derivatives, gave highly isotactic polymers, as in the case of anionic polymerization. In addition, the control of one-handed helical conformation was attained in the radical polymerization of 1-phenyldibenzosuberyl methacrylate using chiral neomenthanethiol or cobalt(II) complexes as an additive.  相似文献   

18.
Thiocarbonyl fluoride, CF2?S, and thiocarbonyl chlorofluoride, CFCl?S, undergo addition polymerization in free radical-initiated systems. In addition, both compounds copolymerize with various unsaturated compounds, including typical vinyl and vinylidene monomers. The chlorofluoride, because of its rapid polymerization rate, copolymerizes best with very active monomers, of which 2,3-dichloro-1,3-butadiene is an example. Thiocarbonyl fluoride polymerizes best at low temperatures. The trialkylborane—oxygen redox couple has been adapted to free-radical polymerizations and copolymerizations from ?60 to ?120°C. With such initiation CF2?S has been copolymerized with terminal and internal olefins, vinyl compounds, allyl compounds, and acrylic esters. Copolymerization with propylene is unusual, in that it proceeds in a manner that strongly favors a product composed of two molecules of CF2?S for each propylene. In other cases, product compositions are more responsive to the ratio of monomers charged.  相似文献   

19.
A new approach for the surface grafting of polymer chains to colloidal substrates is described. A cationic macroinitiator has been designed for the surface polymerization of a wide range ofhydrophilic methacrylates from ultrafine inorganic oxide sols by atom transfer radical polymerization in protic media at ambient temperature. One advantage of this approach is that it allows one-pot syntheses: the macroinitiator is adsorbed onto the sol, followed by an in situ polymerization. Nonionic, cationic, and betaine monomers can be polymerized directly by this protocol, with reasonably high conversions being obtained, as judged by 1H NMR spectroscopy. Anionic monomers such as sodium 4-styrenesulfonate cannot be polymerized directly due to incompatibility problems with the cationic macroinitiator-coated sol. However, hydroxylated monomers such as glycerol monomethacrylate can be surface-polymerized and then converted to anionic polyelectrolytes by reaction with succinic anhydride under mild conditions. This derivatization was confirmed by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopic analysis. Thermogravimetry was used to assess the degree of polymer grafting. Higher target degrees of polymerization led to increased grafted polymer loadings, as expected. Particle morphologies and relative degrees of dispersion in aqueous solution were assessed by transmission electron microscopy and dynamic light scattering, respectively. Surface characterization of the polymer-grafted sols was achieved by X-ray photoelectron spectroscopy and aqueous electrophoresis measurements. Most of the data reported in this study concern surface polymerizations from ultrafine silica sols, but some preliminary data for ultrafine tin(IV) oxide sols are also presented. Since most surfaces are negatively charged, this cationic macroinitiator approach can, in principle, be extended to include a wide range of sols, latexes, and planar substrates without requiring a separate surface functionalization step.  相似文献   

20.
The chemical oxidation of aniline with ferric chloride, FeCl3 · 6H2O in the HCl aqueous solutions to form polyaniline (PANI) powder and films has been investigated. The effect of acid concentration on the deposition of PANI film in situ was studied. The presence of an acid affects both the yield of the polymer and the growth rate of the film. This effect was corroborated by the UV-visible absorption studies of the films deposited on glass supports during the polymerization. The influence of the acid on the yield of the PANI powder formed in the bulk solution was also examined. We have found that the yield of the polymer formed either on the surface or in the bulk solution decreased with the increasing concentration of HCl. The effect of HCl concentration on the in situ UV-visible absorption at the early stages of aniline polymerization is also discussed. The text was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号