首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four phenyl-substituted polyquinoxalines have been prepared by the reaction of combinations of two tetraamines, 3,3′-diaminobenzidine and 3,3,′4,4′-tetraaminodiphenyl ether, with two bisbenzils, 4,4′-dibenzil and 4,4′-oxydibenzil. The polymers were prepared by melt and solution polymerizations. Melt condensations were performed at 180, 220, and 280°C. and samples were periodically removed and characterized. The solution polymerizations consisted of two stages, initially forming an intermediate molecular weight polymer (ηinh 0.6–1.0) which was advanced at 400°C. to final polymer (ηinh 1.5 to 2.2). Clear yellow films, cast from m-cresol solution, exhibited good toughness and flexibility. The phenyl-substituted polyquinoxalines exhibited excellent oxidative and thermal stability. Polymer decomposition temperatures in air were generally about 550°C. Isothermal aging at 371°C. (700°F.) in air showed weight retentions as high as 93 and 50% after 100 and 200 hr., respectively. Weight-average molecular weight determination by light-scattering technique on a polymer with an ηinh of 2.16 suggested a value of 247,000. Certain physical properties of the phenyl-substituted polyquinoxalines are compared with those of the corresponding ordinary polyquinoxalines to illustrate the advantageous effect of introducing a phenyl group on the quinoxaline ring.  相似文献   

2.
Abstract

High molecular weight polyphenyl-as-triazines were prepared at ambient temperature by the cyclopolycondensation of perfluoroglutaramidrazone and perfluoroadipamidrazone with various bis(1,2-dicarbonyl) monomers. The effect which the perfluoroalkylene group had upon certain chemical and physical properties of the polymers was determined. Thermal evaluation involved TGA, DSC, TMA, and isothermal weight loss studies of films at 232 °C in air. The polymers exhibited excellent hydrolytic stability as evidenced by retention of n inh after boiling in water (24 hr) and 10% sodium hydroxide solution (8 hr). A stable uncyclized intermediate was isolated from the reaction of perfluoroadipamidrazone and benzil which was cyclized to the phenyl-as-triazine model compound [3,3′ -perfluorotetramethylenedi (5,6-diphenyl-as-triazine)].  相似文献   

3.
New thermally stable polymers that contained benzimidazole and benzimidazobenzoisoquinoline fragments in polymer chains were synthesized by one-stage cyclopolycondensation of aromatic tetramines (3,3′, 4,4′-tetraminodiphenyl ether, 3,3′,4,4′-tetraminodiphenyl methane, 3,3′,4,4′-tetraminodiphenyl sylfone, and 3,3′-diaminobenzidine) with 1,4,5-naphthalene tricarboxylic acid 4:5–anhydride in polyphosphoric acid and with 1,4,5-naphthalene tricarboxylic acid 4:5–anhydride 1-phenyl ester. All polymers obtained were soluble in concentrated sulfuric acid, 85% phosphoric acid, polyphosphoric acid, methane sylfonic acid. Some were soluble in formic acid. Thermogravimetric analyses indicated that these polymers were stable up to 450–500°C in air. The polymers had good hydrolytic stability.  相似文献   

4.
A series of polyamide-azomethine-ethers was prepared by condensation of 4,4′-diaminoanilide with 4,4′-diformyl-α,ω-diphenoxyalkane, 4,4′-diformyl-3,3′-methoxy-α,ω-diphenoxyalkane, and 4,4′-diformyl-3,3′-ethoxy-α,ω-diphenoxyalkane, respectively. The inherent viscosities of polymers were obviously increased when the polymers were treated by heat under nitrogen at 220°C. The thermotropic liquid crystalline properties were examined by DSC, microscope observations, and TGA. All of the polymers, except polymer A-1, exhibit thermotropic liquid crystalline properties. They also exhibit threaded and/or Schlieren textures examined by the polarizing microscope which indicate a nematic phase. In most cases, the mesophase exists up to ca. 400-460°C shown by TGA study. The mesophase cannot exist above 400-460°C because of the thermal decomposition.  相似文献   

5.
Two high molecular weight (ηinh > 1.0) soluble poly-as-triazines have been prepared by the solution polycondensation in m-cresol of 2,6-pyridinediyl dihydrazidine with p,p′-oxybis(phenyleneglyoxal hydrate) and with p,p′-oxydibenzil. Thermal characterization of the poly-as-triazines by TGA showed polymer decomposition temperatures of ~400°C after a 300°C cure in argon. Poly-as-triazines exhibited weight losses <8% after aging in static air at 316°C for 200 hr. Clear yellow films cast for m-cresol solutions exhibited good flexibility and toughness even after aging at 316°C for 200 hr in air and after refluxing in 10% aqueous potassium hydroxide solution for 24 hr.  相似文献   

6.
A series of new high molecular weight soluble ester phenyl-as-triazine and ester phenyl-quinoxaline polymers were prepared by solution cyclopolycondensation of oxalamidrazone or 3,3′-diaminobenzidine, respectively, with various bis(benzilyl)esters. Ester groups are incorporated within the backbone of the polymer chain and also as pendant groups on the heterocyclic ring. By TGA in air, initial weight losses for the all-aromatic polyester phenyl-as-triazines and polyester phenylquinoxalines began at ca. 350 and 400°C, respectively. Films of ester phenyl-as-triazine and ester phenylquinoxaline polymers exhibited good thermo-oxidative stability after aging in circulating air at 232 and 288°C, respectively. Two phenylquinoxaline model compounds were also prepared.  相似文献   

7.
In this article a new synthesis of 3,3′-diaminobiphenyl (3,3′-DABP) is described, along with the preparation and characterization of polyamides and polyimides based on it. Reactivity of this monomer was calculated by a molecular simulation study, using ab initio quantum-mechanical methods. Terephthaloyl and isophthaloyl chloride were used for the synthesis of polyamides, while 3,3′,4,4′-biphenylenetetracarboxylic acid dianhydride and 4,4′-(hexafluoroisopropylidene) diphthalic anhydride were used for the synthesis of polyimides. Medium to high molecular weight polymers were attained, with inherent viscosities near or higher than 1.0 dL/g, the solubility of the 3,3′-DABP polymers was much better than that of the homologous polymers from benzidine (4,4′-DABP), the glass-transition temperatures were lower, by about 40°C, and the thermal resistance, as measured by thermogravimetry, was virtually the same. Amorphous films, made from cast polymer solutions, showed excellent mechanical properties, comparable to conventional aromatic polyamides and polyimides. Theoretical calculations demonstrated that the radius of giration, end-to-end distance and density of poly(3,3′-DABP-isophthalamide) were lower than those of poly(4,4′-DABP-isophthalamide), as a consequence of the chain folding induced in the backbone by the m-substitution in 3,3′-DABP. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4646–4655, 1999  相似文献   

8.
Phenylated, ordered imide–quinoxaline copolymers of high oxidative-thermal stability were prepared by one-step solution condensation of aromatic tetraamines with N,N′-bis(4-benzilyl)pyromellitimide. Polymerization in m-cresol leads to high molecular weight polymers that remain soluble. Thermal gravimetric analysis and isothermal decomposition at 400°C shows that these polymers are as stable as polyimides or polyquinoxalines. The polymer decomposition temperatures range between 495 and 550°C, depending upon structure. Also, the rate of isothermal decomposition at 400°C in air showed a strong dependency of weight loss on structure. Tough films were cast from solution.  相似文献   

9.
Novel methyl-substituted aromatic poly (ether sulfone)s and poly (ether ketone)s were synthesized from combinations of 3,3′,5,5′-tetramethylbipheny-4,4′-diol and 2,2′,3,3′,5,5′-hexamethylbiphenyl-4,4′-diol, and 4,4′-dichlorodiphenyl sulfone and 4,4′-difluorobenzo-phenone by nucleophilic aromatic substitution polycondensation. The polycondensations proceeded quantitatively in a N-methyl-2-pyrrolidone-toluene solvent system in the presence of anhydrous potassium carbonate to afford the polymers with inherent viscosities between 0.86 and 1.55 dL/g. The methyl-substituted poly (ether sulfone)s and poly (ether ketone)s showed good solubility in common organic solvents such as chloroform, tetrahydrofuran, pyridine, m-cresol, and N,N-dimethylacetamide. The tetramethyl- and hexamethyl-substituted aromatic polyethers had higher glass transition temperatures than the corresponding unsubstituted polymers, and did not decompose below 350°C in both air and nitrogen atmospheres. The films of the methyl-substituted poly (ether ketone)s became insoluble in chloroform by the irradiation of ultraviolet light, indicating the occurrence of photochemical crosslinking reactions. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
Thermally stable poly(metal phthalocyanine)imide copolymers were prepared with metal(11) 4,4′,4″,4? -phthalocyanine tetraamines, 4,4′ -diamino diphenyl ether, and 3,3′,4,4′ -benzophenone tetracarboxylic dianhydride. Variables such as molar concentrations of the reagents, solvents, and temperature were investigated to optimize the conditions of the polymerization. Inherent viscosity, and infrared (IR) spectral and thermogravimetric analysis (TGA) studies were done to characterize the polymers. These polymers are stable and thier decomposition temperatures both in air and nitrogen are greater than 500°C. Their char yields at 800°C in nitrogen varied between 60 and 76%, depending on the type and concentrations of the metal phthalocyanine tetraamines. These polymers can be used to produce heat-stable films, fibers, varnishes, and adhesives.  相似文献   

11.
Novel polypyrazolinones with inherent viscosities ranging from 0.12 to 0.44 dL/g were prepared by the Michael-type nucleophilic addition-cyclization of various dihydrazines with 3,3′-(1,3- or 1,4-phenylene)bis(ethyl propynoate) (1,3- or 1,4-PEP) and 3,3′-(1,4-phenylene)bis(phenyl propynoate) (1,4-PPhP) in N-methylpyrrolidone (NMP) solution at 25–110°C. The polymers exhibited moderate thermal stability with initial weight loss in air about 200°C and in nitrogen about 300°C (TGA). No apparent Tg′s were observed by DSC analysis. The synthesis and characterization of the polypyrazolinones is discussed.  相似文献   

12.
High molecular weight polymers from trans-4,4′-dihydroxystilbene, bisphenols, and 4,4′-difluorodiphenylsulfone were synthesized by a nucleophilic displacement reaction using DMAc as solvent in the presence of potassium carbonate. Characterization and crosslinking studies of these polymers were carried out by DSC, TGA, TMA, x-ray diffraction, and solution and solid NMR. It was found that all polymers can be crosslinked to some extent on heating to 350°C. We also studied the epoxidation of these polymers with hydrogen peroxide in the presence of methyltrioctylammonium tetrakis (diperoxotungsto) phosphate (3—) as the catalyst in a biphasic system. The epoxidized polymers are thermally cross-linkable. Very efficient crosslinking was obtained by heating the epoxidized polymers at 350°C under nitrogen. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
2,2,′3,3′‐Biphenyltetracarboxylic dianhydride (2,2,′3,3′‐BPDA) was prepared by a coupling reaction of dimethyl 3‐iodophthalate. The X‐ray single‐crystal structure determination showed that this dianhydride had a bent and noncopolanar structure, presenting a striking contrast to its isomer, 3,3,′4,4′‐BPDA. This dianhydride was reacted with aromatic diamines in a polar aprotic solvent such as N,N‐dimethylacetamide (DMAc) to form polyamic acid intermediates, which imidized chemically to polyimides with inherent viscosities of 0.34–0.55 dL/g, depending on the diamine used. The polyimides from 2,2,′3,3′‐BPDA exhibited a good solubility and were dissolved in polar aprotic solvents and polychlorocarbons. These polyimides have high glass transition temperatures above 283°C. Thermogravimetric analyses indicated that these polyimides were fairly stable up to 500°C, and the 5% weight loss temperatures were recorded in the range of 534–583°C in nitrogen atmosphere and 537–561°C in air atmosphere. All polyimides were amorphous according to X‐ray determination. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1425–1433, 1999  相似文献   

14.
Polycondensations of N,N′-bis(hydroxyalkyl)pyromellitic diimides, N,N′-bis(hydroxyphenyl)-pyromellitic diimides, N,N′-bis(hydroxyalkyl)-3,3′,4,4′-benzophenonetetracarboxylic diimides and N,N′-bis(hydroxyphenyl)-3,3′-4,4′-benzophenonetetracarboxylic diimides with aromatic disulfonyl chlorides were carried out in pyridine to produce poly(imide-sulfonate)s. The resulting polymers had inherent viscosities in the range of 0.25–0.38 dL/g. These poly(imide-sulfonate)s were insoluble in common organic solvents and had relatively good thermal stability. The TGA data showed 10% weight losses at 253–365°C and residual weights at 500°C were 22–72% in nitrogen.  相似文献   

15.
Abstract

A series of aliphatic polybenzoxazoles of high molecular weights was prepared in three steps by the low-temperature solution polycondensation of tetrakis(trimethylsilyl)-substituted 4,4′-diamino-3,3′-dihydroxy-biphenyl with aliphatic diacid chlorides with 7 to 12 methylene units yielding trimethylsilyl-substituted poly(o-hydroxysamide) precursor polymers, which were subjected to desilylation with methanol giving the poly(o-hydroxyamide)s, followed by thermal cyclodehydration. The aliphatic polybenzoxazoles had melting points in the 172 to 246 °C range with glass transition temperatures of 55-97°C. They were stable in the melt state up to 400 °C in nitrogen. These polybenzoxazoles and the corresponding bisbenzoxazole model compounds exhibited no liquid crystallinity.  相似文献   

16.
Three polymers have been prepared by the condensation of benzo[1,2-b;5,4-b ′]-dipyrrolo-2,3,4,5-tetraone (I) with 1,2,4,5-tetraaminobenzene (II), 3,3 ′-diaminobenzidine (III), and 3,3 ′,4,4 ′-tetraaminodiphenyl ether (IV) in polyphosphoric acid (PPA) solution. The polymer structures were substantiated by comparison of their infrared and ultraviolet spectra with spectra of the model compounds and elemental analysis. The polymers had inherent viscosities of 0.86-0.90 (H2SO4) and thermal stabilities of 460°C and up to 700°C in air and nitrogen atmospheres, respectively.  相似文献   

17.
Pyridine-2,6-dicarboxylic acid phenyl ester was condensed with 3,3′-diaminobenzidine and 3,3′,4,4′-tetraaminodiphenyl ether. Polyamides were also synthesized by condensation of the above ester with p-phenylenediamine, benzidine, 4,4′-diaminodiphenyl sulfide and 4,4′-diaminodiphenyl sulfone. These amides had higher inherent viscosities and greater thermal stability than was reported before. Model compounds of imidazoles were prepared by condensation of the same ester with o-phenylenediamine and 2,3-diaminopyridine and of polyamides by condensation with aniline and 2-aminopyridine. In the case of the polyimidazole, the completely closed ring of imidazole did not form. The ultraviolet spectra of model compounds were compared with those of the polymers. The thermogravimetric curves show that the polymers are stable up to more than 400°C under argon atmosphere. All polymers were insoluble in most organic and inorganic solvents. They dissolved only partially in DMSO and DMF. Inherent viscosity was measured for the soluble polymer fraction.  相似文献   

18.
Six thermally stable polyquinoxalines have been prepared by the reactions of combinations of three tetraamines, 3,3′,4,4′-tetraaminodiphenyl sulfone (II), and 3,3′,4,4′-tetraaminodiphenyl ether (V), with two bisglyoxals, 4,4′-diglyoxalyldiphenyl sulfide dihydrate (III) and 4,4′-diglyoxalyldiphenyl sulfone dihydrate (IV). The polymers were prepared from polymerization in two stages. The first stage, a solution polymerization, produces an initially low or moderate molecular weight material, which is advanced to a high molecular weight (ηinh > 1.0) by heating at 375°C. under reduced pressure. All the polyquinoxalines have excellent thermal stability both in nitrogen and in air and improved solubility.  相似文献   

19.
A series of organosoluble aromatic polyimides (PIs) was synthesized from 5,5′‐bis[4‐(4‐aminophenoxy)phenyl]‐4,7‐methanohexahydroindan (3) and commercial available aromatic dianhydrides such as 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride (ODPA), 4,4′‐sulfonyl diphthalic anhydride (SDPA), or 2,2′‐bis(3,4‐dicarboxyphenyl) hexafluoropropanic dianhydride (6FDA). PIs (IIIc–f), which were synthesized by direct polymerization in m‐cresol, had inherent viscosities of 0.83–1.05 dL/g. These polymers could easily be dissolved in N,N′‐dimethylacetamide (DMAc), N‐methyl‐2‐pyrrolidone (NMP), N,N‐dimethylformamide (DMF), pyridine, m‐cresol, and dichloromethane. Whereas copolymerization was proceeded with equivalent molar ratios of pyromellitic dianhydride (PMDA)/6FDA, 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA)/6FDA, or BTDA/SDPA, or ½ for PMDA/SDPA, copolyimides (co‐PIs), derived from 3 and mixed dianhydrides, were soluble in NMP. All the soluble PIs could form transparent, flexible, and tough films, and they showed amorphous characteristics. These films had tensile strengths of 88–111 MPa, elongations at break of 5–10% and initial moduli of 2.01–2.67 GPa. The glass transition temperatures of these polymers were in the range of 252–311°C. Except for IIIe, the 10% weight loss temperatures (Td) of PIs were above 500°C, and the amount of carbonized residues of the PIs at 800°C in nitrogen atmosphere were above 50%. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1681–1691, 1999  相似文献   

20.
Several new poly(metal phthalocyanine)imide copolymers have been prepared using 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BPTDA), metal(11) 4,4′,4″,4″′-phthalocyanine tetraamines (MPTA), p-phenylenediamine, 4,4′-methylenedianiline, and 9,9-bis(4-aminophenyl)-fluorene (BAF). The attractive feature of these polymers is their high thermooxidative and thermal stability. The polymer decomposition temperatures of all the imide copolymers are greater than 500°C in air and N atomspheres. Another noteworthy property is their high char yield: 60–78% at 800°C in a N2 atmosphere. Variation of the metal phthalocyanine concentration has a remarkable effect on the thermal stability and degree of polymerization. The most preferred molar proportion of the reagents MPTA, diamine, and BTDA is 1.25:7.5:10. These polymers may be useful in the preparation of heat-resistant films and fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号