首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Vibrational Spectra and Force Constants of the Series OP(N(CH3)2)3 – OP(CH3)3 and SP(N(CH3)2)3 – SP(CH3)3 The vibrational spectra (IR and Raman) of the compounds of the title series are recorded and assigned to the normal vibrations. By a simplified force field the valence force constants are calculated and discussed. The results are compared with those of the NMR spectroscopy.  相似文献   

2.
The IR- and RAMAN -spectra are reported from OP(OCH3)2Cl, OP(OCH3)Cl2, SP(OCH3)Cl, SP(OCH3)Cl2. The assignement to the fundamental vibration is given and all Valence-force-constants are calculated. With increasing number of chlorine atoms decrease f P? OCH3 and f P? Cl. In the contrary, f O? P and f S? P increase. Here the influence of decreasing electro negativity is compensated by the change from an element of the first period of eight elements to an element of the second period.  相似文献   

3.
Vibrational Spectra and Force Constants of W(OCH3)6, Mo(OCH3)6, and [Sb(CH3)4][Sb(OCH3)6] The infrared and Raman spectra of the monomeric hexamethoxides of Tungsten and Molybdenum and of the ionic compound [Me4Sb]+[Sb(OMe)6]? (prepared from [Sb(OMe)5]2 and Me4SbOMe; Me = CH3) are recorded and interpreted on the basis of C3i symmetry. The force fields of W(OMe)6 and [Sb(OMe)6]? are calculated using the same basis set of force constants. Both W? O- and Sb? O- stretching force constants are identical (2.56 N/cm), however the other parts of the valence force field are markedly different.  相似文献   

4.
Alternative Ligands. XXX Novel Tripod Ligands XM' (OCH2PMe2)n(CH2CH2PMe2)3?n (M' = Si, Ge; n = 0–3) for Cage Structures Attempts to prepare new tripod ligands XSi(OCH2PMe2)3 [X = CF3 ( 15 ), C6F5 ( 16 ), NMe2 ( 17 ), Cl ( 18 ), F ( 19 ), H ( 20 ), OEt ( 21 ), OMe ( 22 )] prove to be unsuccessful in spite of using different pathways, because the groups X undergo following reactions giving insoluble solids (polyadducts) or form inseparable mixtures, e. g. (RO)nSi(OCH2PMe2)4?n (R = Me, Et). In many cases Si(OCH2PMe2)4 ( 13 ) can be isolated from the reaction mixture. The syntheses of the ligands XSi(CH2CH2PMe2)3 [X = NMe2 ( 6 ), Cl ( 7 ), F ( 8 ), OMe ( 9 ), Vi ( 12 )], Si(OCH2PMe2)4 ( 13 ) und Me3GeOCH2PMe2 ( 14 ) are successful. The compounds MeSi(OCH2PMe2)2CH2CH2NMe2 ( 10 ) and MeSi(OCH2PMe2)2CH2CH2P(CF3)2 ( 11 ) with different donor groups are obtained in good yields. The preparative program includes the synthesis of the known representatives MeSi(OCH2PMe3)3 ( 1 ), MeSi(OCH2PMe2)2CH2CH2PMe2 ( 2 ), MeSi(OCH2PMe2)(CH2CH2PMe2)2 ( 3 ), MeSi(CH2CH2PMe2)3 ( 4 ) and MeGe(OCH2PMe2)3 ( 5 ). Important preparative steps are the substitution of M'Cl (M' = Si, Ge) by Me2PCH2O groups and the photochemically induced or base catalyzed addition of HNMe2, HPMe2 or HP(CF3)2 to SiVi functions. The novel compounds are characterized by analytical and spectroscopic (IR, NMR, MS) investigations.  相似文献   

5.
Rate constants for the gas‐phase reactions of CH3OCH2CF3 (k1), CH3OCH3 (k2), CH3OCH2CH3 (k3), and CH3CH2OCH2CH3 (k4) with NO3 radicals were determined by means of a relative rate method at 298 K. NO3 radicals were prepared by thermal decomposition of N2O5 in a 700–750 Torr N2O5/NO2/NO3/air gas mixture in a 1‐m3 temperature‐controlled chamber. The measured rate constants at 298 K were k1 = (5.3 ± 0.9) × 10?18, k2 = (1.07 ± 0.10) × 10?16, k3 = (7.81 ± 0.36) × 10?16, and k4 = (2.80 ± 0.10) × 10?15 cm3 molecule?1 s?1. Potential energy surfaces for the NO3 radical reactions were computationally explored, and the rate constants of k1k5 were calculated according to the transition state theory. The calculated values of rate constants k1k4 were in reasonable agreement with the experimentally determined values. The calculated value of k5 was compared with the estimate (k5 < 5.3 × 10?21 cm3 molecule?1 s?1) derived from the correlation between the rate constants for reactions with NO3 radicals (k1k4) and the corresponding rate constants for reactions with OH radicals. We estimated the tropospheric lifetimes of CH3OCH2CF3 and CHF2CF2OCH2CF3 to be 240 and >2.4 × 105 years, respectively, with respect to reaction with NO3 radicals. The tropospheric lifetimes of these compounds are much shorter with respect to the OH reaction. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 490–497, 2009  相似文献   

6.
The IR- and RAMAN spectra are reported for the above mentionned compounds. All valence force-constants are calculated. The substitution of oxygen by sulfur causes a decrease of all force-constants. 18% for f P? OCH3 and f P? SCH3, 10% for f O?P and f S?P and 2% for f O? CH3 and f S? CH3.  相似文献   

7.
Alternative Ligands. XXXI. Nickelcarbonyl Complexes of Tripod Ligands of the Type XM′(OCH2PMe2)n(CH2CH2PR2)3–n (M′ = Si, Ge; n = 0–3) The coordinating properties of the tripod ligands RM′(OCH2PMe2)n(CH2CH2PMe2)3–n (M′ = Si, Ge) ( 1–7 ), MeSi(OCH2PMe2)2CH2CH2P(CF3)2 ( 8 ), MeSi(OCH2PMe2)2CH2CH2NMe2( 10 ) as well as of the tetradentate representative Si(OCH2PMe2)4 ( 9 ) have been investigated by the preparation of the novel nickel carbonyl complexes LNiCO ( 11–18 ), Si(OCH2PMe2)4[Ni(CO)2]2 ( 19 ) and (HOCH2PMe2)2Ni(CO)2 ( 20 ). They are obtained in moderate to good yields by the reaction of Ni(CO)4 with the corresponding ligands in toluene (20–111°C) (see Table 1). The new compounds have been characterized by analytical (C, H) and spectroscopic investigations (IR; 1H-, 13C-, 19F, 31P-NMR, MS). The ligand properties are discussed on the basis of spectroscopic data [in particular coordination shifts Δδ = δ(complex)—δ(ligand)] leading to the conclusion that the high electron density on Ni gives rise to a weak, but significant Ni→Si interaction. An important indication comes from the large low field shift ΔδF = 34.5 ppm for the SiF acceptor bridge in 17 . This result is supported by an X-ray diffraction study of 11 giving an NiSi distance of 3.941(2) Å. With the exception of O2…?P3 (Abb. 7) all other O…?P through-cage contacts are longer than the NiSi distance. An additional release from the high charge density on Ni is obtained via π-backbonding to the neighbouring groups OCPMe2, CCPMe2 and CO.  相似文献   

8.
Germatranes bearing a ferrocenylalkoxyl moiety have been obtained by the reaction of HOGe(OCH2CH2)3N with various ferrocenyl alcohols. A convenient new synthesis method of FcCH2OGe(OCH2CH2)3N was reported. FcCH2OGe(OCH2CH2)3N was prepared in 93% yield when FcCH2OH reacted with HOGe(OCH2CH2)3N in chloroform at room temperature in the presence of molecular sieves (3 Å) as a dehydrating agent. All compounds were characterized by elemental analysis, 1H NMR and IR spectroscopy. The molecular structures of FcCH2OGe(OCH2CH2)3N and FcCH(CH3)OGe(OCH2CH2)3N have been determined by X‐ray diffraction. The antitumor activities of FcCH2OGe(OCH2CH2)3N and p‐FcC6H4CH2OGe(OCH2CH2)3N were determined. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
(CH3)2SBr2 – Reactions and Structures (CH3)2SBr2 ( 1 ) is a donor acceptor complex (8-S-3 + 10-Br-2) which reacts with (CH3)2S(?O)NSi(CH3)3 to yield [(CH3)2S(O)?N? S(CH3)2]+Br? ( 2 ). With SbBr3 (CH3)2SBr+SbBr4? ( 3 ) can be isolated. 1 crystallizes monoclinic in the space group P21/c with a = 733.8, b = 734.2, c = 1132.7 pm, β = 92.8° and Z = 4. 2 crystallizes in the orthorhombic space group Pnma with a = 967.2, b = 793.3, c = 1168.3 pm and Z = 4. The SBr and BrBr force constants of 1 are compared with those of S2Br2, 3 and Br2 resp. The nmr and mass spectra of 1 and 2 are communicated.  相似文献   

10.
Preparation and Spectroscopic Characterization of the Persulfonium Salts (CH3)(CF3)SF3+SbF6? and (CH3)(CF3)2SF2+SbF6? and Crystal Structure of CF3SF2+SbF6? [1] . The preparation of the persulfonium salts (CH3)(CF3)SF3+SbF6? and (CH3)(CF3)2SF2+SbF6? by methylation of the sulfuranes CF3SF3 and (CF3)2SF2 with CH3OSO+SbF6? in liquid SO2 is reported. The thermolabile compounds are characterized by IR, Raman, 1H, 13C, and 19F NMR spectroscopy. CF3SF2+SbF6? crystallizes in the space group C2/c with a=16.889(8) Å, b=7.261(4) Å, c=13.416(7) Å, β=91.08° with 8 formula units per unit cell at 167 K. Cations and anions are connected via short SF contacts forming a Ψ-octahedral surrounding of the central S atom which is in close analogy to the already known CF3SF2+AsF6?.  相似文献   

11.
A study of the reaction initiated by the thermal decomposition of di-t-butyl peroxide (DTBP) in the presence of (CH3)2C?CH2 (B) at 391–444 K has yielded kinetic data on a number of reactions involving CH3 (M·), (CH3)2CCH2CH3 (MB·) and (CH3)2?CH2C(CH3)2CH2CH3 (MBB·) radicals. The cross-combination ratio for M· and MB· radicals, rate constants for the addition to B of M· and MB· radicals relative to those for their recombination reactions, and rate constants for the decomposition of DTBP, have been determined. The values are, respectively, where θ = RT ln 10 and the units are dm3/2 mol?1/2 s?1/2 for k2/k and k9/k, s?1 for k0, and kJ mol?1 for E. Various disproportionation-combination ratios involving M·, MB·, and MBB· radicals have been evaluated. The values obtained are: Δ1(M·, MB·) = 0.79 ± 0.35, Δ1(MB·, MB·) = 3.0 ± 1.0, Δ1(MBB·, MB·) = 0.7 ± 0.4, Δ1(M·, MBB·) = 4.1 ± 1.0, Δ1(MB·, MBB·) = 6.2 ± 1.4, and Δ1(MBB·, MBB·) = 3.9 ± 2.3, where Δ1 refers to H-abstraction from the CH3 group adjacent to the center of the second radical, yielding a 1-olefin. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
The intermolecular interaction energies of the CH3OCH3? CH4, CF3OCH3? CH4, and CF3OCF3? CH4 systems were calculated by ab initio molecular orbital method with the electron correlation correction at the second order Møller–Plesset perturbation (MP2) method. The interaction energies of 10 orientations of complexes were calculated for each system. The largest interaction energies calculated for the three systems are ?1.06, ?0.70, and ?0.80 kcal/mol, respectively. The inclusion of electron correlation increases the attraction significantly. It gains the attraction ?1.47, ?1.19, and ?1.27 kcal/mol, respectively. The dispersion interaction is found to be the major source of the attraction in these systems. In the CH3OCH3? CH4 system, the electrostatic interaction (?0.34 kcal/mol) increases the attraction substantially, while the electrostatic energies in the other systems are not large. Fluorine substitution of the ether decreases the electrostatic interaction, and therefore, decreases the attraction. In addition the orientation dependence of the interaction energy is decreased by the substitution. © 2002 Wiley Periodicals, Inc. J Comput Chem 23: 1472–1479, 2002  相似文献   

13.
Rate constants were determined for the reactions of OH radicals with the hydrofluoroethers (HFEs) CH2FCF2OCHF2(k1), CHF2CF2OCH2CF3 (k2), CF3CHFCF2OCH2CF3(k3), and CF3CHFCF2OCH2CF2CHF2(k4) by using a relative rate method. OH radicals were prepared by photolysis of ozone at UV wavelengths (>260 nm) in 100 Torr of a HFE–reference–H2O–O3–O2–He gas mixture in a 1‐m3 temperature‐controlled chamber. By using CH4, CH3CCl3, CHF2Cl, and CF3CF2CF2OCH3 as the reference compounds, reaction rate constants of OH radicals of k1 = (1.68) × 10?12 exp[(?1710 ± 140)/T], k2 = (1.36) × 10?12 exp[(?1470 ± 90)/T], k3 = (1.67) × 10?12 exp[(?1560 ± 140)/T], and k4 = (2.39) × 10?12 exp[(?1560 ± 110)/T] cm3 molecule?1 s?1 were obtained at 268–308 K. The errors reported are ± 2 SD, and represent precision only. We estimate that the potential systematic errors associated with uncertainties in the reference rate constants add a further 10% uncertainty to the values of k1k4. The results are discussed in relation to the predictions of Atkinson's structure–activity relationship model. The dominant tropospheric loss process for the HFEs studied here is considered to be by the reaction with the OH radicals, with atmospheric lifetimes of 11.5, 5.9, 6.7, and 4.7 years calculated for CH2FCF2OCHF2, CHF2CF2OCH2CF3, CF3CHFCF2OCH2CF3, and CF3CHFCF2OCH2CF2CHF2, respectively, by scaling from the lifetime of CH3CCl3. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 239–245, 2003  相似文献   

14.
Alternative Ligands. XXXII [1]. Novel Tetraphosphane Nickel Complexes with Tripod-Ligands of the Type XM′(OCH2PMe2)n(CH2CH2PR2)3 – n (M′ = Si, Ge; n = 0 – 3) Tripod Ligands of the type XM′(OCH2PMe2)n(CH2CH2PMe23 – n (M′ = Si, Ge; n = 0 – 3) ( 1 – 6 , Table 1) have been used together with PPh3 or PMe3 for the preparation of novel tetraphosphane complexes of Nickel. The representatives LNiPPh3 ( 7 – 12 ) are obtained by reaction of Ni(COD)2 (COD = 1,5-cyclooctadiene) with the corresponding ligands and PPh3 in toluene in moderate yields. The synthesis of the derivatives LNiPMe3 ( 13 – 18 ) is partly ( 16 – 18 ) accomplished in analogy to the Ph3P-complexes; compounds 13 – 16 are obtained in higher yields by reaction of Ni(PMe3)4 with the respective ligand. As a rule, 13 – 18 cannot be separated from by-products. The trinuclear complex FSi(CH2CH2PMe2)3[Ni(PMe2CH2CH2)3SiF]3 ( 19 ) is formed together with 18 in the reaction of Ni(COD)2 with 6 and PMe3. The new compounds have been characterized (if possible) by analytical (C, H), but in general by spectroscopic investigations (IR; 1H-, 13C-, 19F-, 31P-NMR; MS). A weak, but significant Ni → Si interaction through the cage is indicated by the following results: (i) Large low-field shifts δδF of 35.2 ppm ( 12 ), 38.3 ppm ( 18 ) and 37.7 ppm ( 19 ); (ii) 6J(PF) coupling constants [or 3J(PNiSiF) through the cage] of 6.0 Hz ( 12 ) and 7.6 Hz ( 18 ) together with a low-field shift δδSi of 12.8 ppm ( 12 ); (iii) NiSi distances of 3.95 Å in 7 and 3.92 Å in 12 , accompanied by a compression of the cage along the Ni ··· Si axis. An additional release from the high charge density on Ni results from π-backbonding to the phosphane ligands.  相似文献   

15.
Reaction Products of Chloromethoxiphosphines and Antimony (V) Chloride. Vibrational Spectra of the 1:1-adducts of Methoxiphosphoryl Compounds and Antimony (V) Chloride Chloromethoxiphosphines react with antimony(V) chloride in a redox process to yield the chloromethoxiphospllonium hexachloroantimonates(V) (CH3O)3PCl2+SbCl6? (II) and CH3OPCl3+SbCl6? (III). II, III, (CH3O)3PCl+SbCl6?(1) and (CH3O)4P+SbCl6? eliminate easily methyl chloride and give the addition compounds OP(OCH3)3·SbCl5(IV), OPCl(OCH3)2 · SbCl5 (V), OPCl2(OCH3)·SbCl5 (VI) and OPCl3·SbCl5 (VII). The vibrational spectra of IV, V nnd VI are discussed.  相似文献   

16.
The abstraction of the halogenide ligands in [Re(CH3CN)2Cl4]? should result in a solvent‐only stabilized ReIII complex. The reactions of salts of [Re(CH3CN)2Cl4]? with silver(I) and thallium(I) salts were investigated and the solid‐state structures of cis‐[Re(CH3CN)2Cl4]·CH3CN and cis‐[Re(NHC(OCH3)CH3)2Cl4] are described.  相似文献   

17.
Nitrite anions are easily condensed with aryl halides in the presence of the Complex Base NaNH2-CH3CH2(OCH2CH2)2ONa via the intermediate arynes.  相似文献   

18.
Atrane-analogous Compounds. III. Atrane-analogous Compounds of the Type Me2DCH2CH2OSi(Me)(OCH2 CH2)2 D′Me (I) and Type Me2DCH2CH2OSi(Me) OCH2CH22D″Me2 (II) (Me?CH3; D, D′, D″?N, P, As) Atrane analogous compounds I and II (Abb. 1) have been prepared by condensation reactions of trifunctional silanes RSiX3 (X?Cl, OEt, NMe2) with N-methyldiethanolamine, ß-chloroethanol, ß-dimethylaminoethanol, and ß-dimethylarsanoethanol according to eqn. (1) to (3) and reaction schemes of Figs. 2 and 3, respectively. For compounds of type I weak N→Si adduct bonding is indicated for the MeN-donor of the eight-membered ring by significant shifts of the MeNCH2 and OCH2 proton n.m.r. signals. For compounds of type II there is no n.m.r. evidence for D→Si interactions. In spite of equal Lewis acidity of the Si atoms differences in adduct formation are observed for cage, ring, and acyclic podand systems, which can be explained mainly by entropy effects connected to the formation of five-membered rings.  相似文献   

19.
The reaction of S4N4Cl2 with CH3OH gives S4N4(OCH3)2, a simple dimethoxoderivative of S4N4. Its overall geometry is analogous to other compounds of the S4N4X2 type. The chlorination of S4N4(OCH3)2 leads to the oxidation of one sulfur atom to SVI and CH3OS4N4(O)Cl is formed. The compounds were characterized by ir spectroscopy and their crystal structures were determined from single crystal diffraction data collected at ?153°C. The presence of SVI in the molecule of CH3OS4N4(O)Cl is manifested by a marked shortening of the bonds formed by this atom as compared with S4N4Cl2 and S4N4(OCH3)2.  相似文献   

20.
100 MHz 1 H n.m.r. spectra of cis-(CH3)2Pt[P(OCH3)3]2 are analysed in full detail as superimposing [AR3X9]2 and [AR3X9]2M systems. The cis structure is derived from J(PP) and J(PtP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号