首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Transition metal complexes of CoII, NiII and CuII with 4-(4-azidosulfophenylazo)-5-phenyl-3,4-dihydro-2H-pyrazol-3-oneHL1, 4-(4-azidosulfophenylazo)-5-methyl-2-phenyl-3,4-dihydro-2H-pyrazol-3-one HL2 and 4-(3-azidosulfo-6-methoxyphenylazo)-5-methyl-2-phenyl-3,4-dihydro-2H-pyrazol-3-one HL3 were prepared and characterized by elemental analyses, molar conductances and magnetic susceptibilities and by i.r., electronic and e.s.r. spectral measurements as well as thermal (d.t.a and t.g.a.) analysis. The i.r. spectra indicate that HL acts as a bidentate ligand coordinating via the azo and enolic-oxygen linkages. The electronic spectral data and magnetic moments suggest a tetragonally distorted octahedral geometry for the complexes having the formula ML2·2H2O, (M = CoII, NiII and CuII), square pyramidal geometry for CuL 2 3 H2O and tetrahedral geometry for CoL 2 3 . The X-band e.s.r. spectra of the copper(II) complexes reveal anaxial symmetry for both CuL 2 2 2H2O and CuL 2 3 H2O while CuL 2 1 O is isotropic in the solid state at room temperature. The d.t.a. curves show two exothermic peaks for all three complexes CoL 2 3 ,NiL 2 3 2H2O and CuL 2 3 H2O and one endothermic peak for the latter two aqua complexes.  相似文献   

2.
The distribution ciefficients of 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-one (BMPP) and its metal chelates with Co(II). Zn(II) and Eu(III) were determined between an aqueous acetate phase (μ=0.1) and eight ‘inert’ organic solvents at 25°C. On the basis of regular solution theory, the correlation between the distribution coefficients of the ligand (PHA) and that of the metal chelate (PM) vas found to be valid satisfactorily in most of the systems. The correlation between the distribution coefficient of the ligand and the solubility parameter of the solvent has been found to conform to regular solution theory.  相似文献   

3.
The extractant HBMPPT (4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione) was synthesized from HBMPP. Its m.p. was 106–108°C. The synergistic extraction of U(VI) and Th(IV) from nitric acid solution by HBMPPT and TOPO in toluene was studied. The extraction ability of HBMPPT was not so high as that of its parent (HBMPP), but when a little tri-n-octylphosphine oxide (TOPO) was added the ability to extract U(VI) and Th(IV) was seriously improved. The synergistic extracted complexes may be presented as UO2NO3·BMPPT·TOPO and UO2(BMPPT)2·TOPO for U(VI), and Th(NO3)3·BMPPT·TOPO and Th(NO3)2(BMPPT)2·TOPO for Th(IV) respectively.  相似文献   

4.
The extraction behavior of Th(IV) from dilute nitric as well as perchloric acid medium using 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) and its mixture with tri-n-octyl phosphine oxide (TOPO) was investigated. The species of the type Th(X)(PMBP)3·(HPMBP) and Th(X)(PMBP)3·(TOPO) were extracted for the binary and ternary extraction systems, respectively, where X=NO3− or ClO4−. The presence of 1.25·10−5M Th carrier in the aqueous phase resulted in the extracted species of the type of Th(PMBP)4 and Th(PMBP)4·(TOPO), respectively. The extraction constant (logk ex ) for the binary species Th(PMBP)4 was found to be 6.89±0.01 while the overall extraction constant (logK) for the ternary species Th(PMBP)4·(TOPO) was calculated to be 13.17±0.06.  相似文献   

5.
The representative of P,P,P-trichloroylides-5-methyl-2-phenyl-4-(trichlorophosphoranylidene)-2,4-dihydro-3H-pyrazol-3-one-was synthesized. Its constitution was confirmed by 1H, 13C, and 31P NMR spectroscopy and by X-ray analysis. Some chemical properties were studied and compared with ones of P,P,P-trimethylylide-5-methyl-2-phenyl-4-(trimethylphosphoranylidene)-2,4-dihydro-3H-pyrazol-3-one. DFT calculations of the model molecules were carried out.  相似文献   

6.
2,4-Dihydro-5-methyl-2-phenyl-4-(9H-xanthen-9-yl)-3H-pyrazol-3-one ( 3 ) was prepared by the condensation of phenylhydrazine and ethyl α-acetyl-9H-xanthene-9-acetate ( 2 ), or 9H-xanthen-9-ol ( 1 ) and 2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-one ( 4 ). 5-Amino-2,4-dihydro-2-phenyl-4-(9H-xanthen-9-yl)-3H-pyrazol-3-one ( 6 ) was obtained by the condensation of 1 and 5-amino-2,4-dihydro-2-phenyl-3H-pyrazol-3-one ( 5 ).  相似文献   

7.
The extraction equilibria of Co(II) and Zn(II) complexes with 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-one in the presence of tributyl phosphate have been investigated in eight ‘inert’ solvents employing the radioisotopes cobalt-60 and zinc-65. The activity coefficients of different species in the organic phase and the solubility parameter of the adduct have been calculated with the help of regular solution theory. A regularity is observed in the correlation between the adduct formation constant and the activity coefficient of the species.  相似文献   

8.
2,4-Dihydro-5-methyl-2-phenyl-4-(9H-thioxanthen-9-yl)-3H-pyrazol-3-one ( 3 ) was prepared by condensing 9H-thioxanthen-9-ol ( 1 ) with 2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-one ( 2 ), or by cyclizing ethyl α-acetyl-9H-thioxanthene-9-acetate ( 4 ) with phenylhydrazine. 2,4-Dihydro-5-methyl-2-phenyl-4-(9H-thioxan- then-9-yl)-3H-pyrazol-3-one 10,10-dioxide ( 8 ) was prepared by cyclizing ethyl α-acetyl-9H-thioxanthene-9-acetate 10,10-dioxide ( 7 ) with phenylhydrazine. Compound 8 was also obtained by oxidizing 3 with hydrogen peroxide in acetic acid. 5-Amino-2,4-dihydro-2-phenyl-4(9H-thioxanthen-9-yl)-3H-pyrazol-3-one ( 10 ) was obtained by condensing 1 with 5-amino-2,4-dihydro-2-phenyl-3H-pyrazol-3-one ( 9 ).  相似文献   

9.
Cyclopropyldiazonium generated by basic decomposition of N-cyclopropyl-N-nitrosourea easily entered into an azo coupling reaction with 5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (2) to give the corresponding cyclopropylhydrazone in up to 90% yield. Competitive processes occurring under the conditions of cyclopropyldiazonium generation by nitrosation of cyclopropylamine with butyl nitrite mainly include nitrosation of the starting pyrazolone 2. Subsequent transformations of the resulting heterocyclic 3-methyl-1-phenyl-1H-pyrazole-4,5-dione 4-oxime yield 4-[cyclopropyl(oxido)imino]-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2151–2155, December, 2006.  相似文献   

10.
Y. Zhao 《Chromatographia》2000,51(3-4):231-234
Summary A new chelating reagent 2-thiophenaldehyde-4-phenyl-3-thiosemicarbazone (TAPT) has been examined for high performance liquid chromatographic (HPLC) separations of cobalt (II), copper(II) and iron (II) or cobalt (II), nickel (II), iron (II), copper (II) and mercury (II) as metal chelates on a C18, 5μm column (250×4 mm i.d.) The chelates were eluted isocratically with methanol: acetonitrile: water containing sodium acetate and tetrabutylammonium bromide (TBA), and detected at 254 nm. A solvent extraction procedure was developed for simultaneous determination of the metals with detection limits within 0.02–2.5 μ g.mL−1. The method was applied to the determination of copper, cobalt and iron in natural waters.  相似文献   

11.
The synthesis and structural properties of two novel compounds, 4-amino-5-(thien-2-yl ethyl)-2,4-dihydro-3H-1,2,4-triazol-3-one and 4-{[(2-hydroxy-1-naphthyl)methyl-ene]amino}-5-(thien-2-ylmethyl) − 2,4-dihydro-3H-1,2,4-triazol-3-one have been described. 4-Amino-5-(thien-2-ylmethyl)-2,4-dihydro-3H-1,2,4-triazol-3-one was synthesized by treating N-propionyl-2-thien-2-ylethane-hydrazonoate with hydrazine hydrate and the Schiff base was obtained from condensation of substituted amine with 2-hydroxy-1-naphthaldehyde. The Cu(II), Ni(II) and Fe(II) complexes were prepared and characterized by elemental analyses, IR, magnetic moment, UV–Vis, mass spectral data and 1H- and 13C-NMR IR spectra. The Schiff base is coordinated to the metal ions in a tridentate manner with OON donors of the phenolic O, carbonyl O and triazolic N. From the magnetic and UV spectral data, it was found the geometrical structure of Cu(II) and Fe(II) ions are octahedral while Ni(II) ion is square planar.Ab-inito 6-31 G* level calculations provided structural information and IR data that were in good agreement with experimental results.  相似文献   

12.
Some mixed ligand complexes of the type [M(L)(en or phen)(X)2]; where M = Mn(II), Co(II) or Ni(II); L = 2-phenyl-3-(benzylamino)-1,2-dihydroquinazolin-4(3H)-one; en = ethylenediamine, phen = 1,10-phenanthroline; X = N3 or NCS have been prepared. All the complexes were characterized by physico-chemical, spectroscopic and thermal studies. On the basis of electronic spectra and magnetic susceptibility measurements, an octahedral geometry has been proposed for all the complexes. The phen complexes are thermally more stable than the en complexes. The electrochemical behavior of the Ni(II) complexes showed that the complexes of phen are reduced at more positive potential compared to the corresponding en complexes.  相似文献   

13.
Some popular neutral extractants (PSO-petroleum sulfoxide, DOSO-di-n-octyl sulfoxide, TBP-tributylphosphate etc.) were chosen as synergist to study the synergistic effect on the extraction reaction with HBMPPT (4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione) for U(VI), and the synergistic separation ability of HBMPPT for U(VI) and Th(IV). The synergistic extraction ability shown by the studied systems for U(VI) is as follows: PSO>DOSO>TBP, and the same sequence was also verified for the separation coefficient of U(VI) and Th(IV). The synergistic complexes may be presented as: UO2NO3·BMPPT·S and UO2(BMPPT)2·S for U(VI) (S is PSO, DOSO or TBP).  相似文献   

14.
Trityl chloride (Ph3CCl) efficiently catalyzes the condensation of 3-methyl-1-phenyl-1H-pyrazol- 5(4H)-one and aromatic aldehydes under mild and solvent-free conditions, affording 4,4''- (arylmethylene)-bis(3-methyl-1-phenyl-1H- pyrazol-5-ol)s in high to excellent yields and in short reaction time. The presence of the requisite organocatalytic trityl carbocation (Ph3C+) species was confirmed by analysis of infrared, 1H NMR, and ultra violet spectral data. A plausible mechanism was proposed for the reaction based on the observations and literature precedent.  相似文献   

15.
The oxidation of catechol by molecular oxygen in the presence of a catalytic amount of copper(II) complex with 2-methyl-3-amino-(3H)quinazoline-4-one (MAQ) and various anions (Cl, Br, ClO 4 , SCN, NO 3 and SO 4 ) was studied. The catecholase biomimetic catalytic activity of the copper(II) complexes has been determined spectrophotometrically by monitoring the oxidative transformation of catechol to the corresponding light absorbing o-quinone (Q). The rate of the catalytic oxidation reaction was investigated and correlated with the catalyst structure, time, concentration of catalyst and substrate and finally solvent effects. Addition of pyridine or Et3N showed a dramatic effect on the rate of oxidation reaction. Kinetic investigations demonstrate that the rate of oxidation reaction has a first order dependence with respect to the catalyst and catechol concentration and obeying Michaelis–Menten Kinetics. It was shown that the catalytic activity depends on the coordination environment of the catalyst created by the nature of counter anions bound to copper(II) ion in the complex molecule and follows the order: Cl > NO 3 > Br > SO 4 > SCN > ClO 4 . To further elucidate the catalytic activity of the complexes, their electrochemical properties were investigated and the catecholase mimetic activity has been correlated with the redox potential of the Cu2+/Cu+ couple in the complexes.  相似文献   

16.
Diazepam (7-chloro-1,3-dihydro-1-methyl-5-phenyl-2H-1,4-benzodiazepin-2-one) is an important derivative of the 1,4-benzodiazepine compound commercially distributed as Valium. The complex formation constants of diazepam with some light lanthanide(III) metal ions have been studied by potentiometric measurements. All titrations were performed in 50–50% (volume/volume) ethanol–water solvent mixtures at constant ionic strength (0.10 mol⋅dm−3). The ionic strength was maintained by using sodium perchlorate. The complex formation constants were determined at 25.00, 35.00 and 45.00 °C. With increasing temperature, a decrease was observed in the protonation constant (pK) of diazepam.  相似文献   

17.
With association of acylpyrazolones and benzhydrazide, two novel Ligands BZ-PCBMCPMP ((Z)-N'-((4-chlorophenyl) (1-(3-chlorophenyl) 3-methyl-5-oxo-1,5-dihydro-4H-pyrazol-4-ylidene) methyl) benzohydrazide) and BZ-PCBPMP ((Z)-N'-((4-chlorophenyl) (1-phenyl) 3-methyl-5-oxo-1,5-dihydro-4H-pyrazol-4-ylidene) methyl) benzohydrazide)) with different O–N–O fashion were synthesized via Schiff base reaction, which on complexation with Zn(II) acetate dihydrate yields novel [Zn(BZ-PCBMCPMP)2] and [Zn-(BZ-PCBPMP)2] complexes with distorted octahedron framework. Structure elucidation was performed through several spectroscopic techniques such as FTIR, 1H-NMR, 13C NMR, TG-DTA, UV/Vis, and Single-crystal XRD. The non-electrolytic nature was confirmed through molar-conductance values. Single crystal X-ray study of the BZ-PCBPMP ligand shows intramolecular as well as intermolecular hydrogen bonding, giving rise to a H-bonded dimer. In [Zn-(BZ-PCBPMP)2] one ligand is symmetrically coordinating while the other is asymmetrically coordinating to the Zinc atom. Antimalarial property of ligands and complexes was also discovered by its efficient MIC activity against Chloroquine sensitive P. falciparum.  相似文献   

18.
The thermal decompositions of cobalt(II), nickel(II) and copper(II) complexes of4-(3'-sulfonylazido-6'-methoxyphenylazo)-1-phenyl-3-methyl-2-pyrazolin-5-one H(D1–SO2N3) and 4-(4'-sulfonylazido phenylazo)-3-phenyl-3-methyl-2-pyrazolin-5-one H(D2–SO2N3) were studied by thermogravimetry. The decomposition in all cases takes place along two stages. The first stage is due to the elimination of water and nitrogen molecules with the formation of tetracoordinate complexes containing nitrene reactive species[M(DSO2N:)2]. The second stage represents the decomposition of the material to the metal oxide. The kinetics of the decomposition were examined by using Coats–Redfern, the decomposition in all complexes was found to be first order for the first and second stages. The activation energies and other activation parameters (H* and S* and G*) were computed and related to the bonding and stereochemistry of the complexes.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

19.
The synergistic extraction of alkaline earth cations from 1M NaNO3 aqueous solutions with 3-phenyl-4-benzoylisoxazol-5-one (HPBI) and tri-n-octylphosphine oxide (TOPO) in toluene at 25°C has been studied. The extraction efficiency follows the order Ba2+<Sr2+<Ca2+<Mg2+, which is the same as that previously observed with 1-phenyl-3-methyl-4-benzoyl-pyrazol-5-one (HPMBP). The extraction occurs at a lower pH range than with HPMBP because of the higher acidity of HPBI. The extracted species are M(PBI)2(TOPO) x withx=2 for M=Mg, Ca, Sr and Ba (logK 1,2,2=3.91, 1.18 and 0.29 respectively) and withx=3 for M=Sr and Ba (logK 1,2,3=3.28 and 2.07 respectively). The strong interactions which occur between HPBI and TOPO (logK int=1.84) have been considered in the extraction constant calculations..  相似文献   

20.
Complexation processes in a cobalt(II) hexacyanoferrate(II) gelatin-immobilized matrix under the action of aqueous solutions containing dithiooxamide H2N−C(S)−C(S)−NH2 and glyoxal HOC−CHO at pH>10 were studied. Under these conditions, mild template synthesis occurs to form a CoIII chelate with the (N,N,S,S)-ligand,viz. 2,7-dithio-3,6-diazaoctadiene-3,5-dithioamide-1,8, with a metal to ligand ratio of 1∶1, where dithiooxamide and glyoxal act as ligand synthons. The reaction mechanism is discussed. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1999–2004, October, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号