首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A DNA biosensor for the detection of specific oligonucleotide sequences of Avian Influenza Virus type H5N1 has been proposed. The NH2‐ssDNA probe was deposited onto a gold electrode surface to form an amide bond between the carboxyl group of thioacid and the amino group from ssDNA probe. The signals generated as a result of hybridization were registered in square wave voltammetry and electrochemical impedance spectroscopy in the presence of [Fe(CN)6]3?/4? as a redox marker. The genosensor is capable to determine 20‐mer and 180‐bp (PCR products) oligonucleotides complementary sequences with detection limit in the fM range. The genosensor displays good selectivity and sensitivity. The 20‐mer as well as 180‐bp oligonucleotides without a complementary sequence generate very low signal.  相似文献   

2.
An aptamer based method is described for the electrochemical determination of ampicillin. It is based on the use of DNA aptamer, DNA functionalized gold nanoparticles (DNA-AuNPs), and single-stranded DNA binding protein (ssDNA-BP). When the aptamer hybridizes with the target DNA on the AuNPs, the ssDNA-BP is captured on the electrode surface via its specific interaction with ss-DNA. This results in a decreased electrochemical signal of the redox probe Fe(CN)6 3? which is measured best at a voltage of 0.188 mV (vs. reference electrode). In the presence of ampicillin, the formation of aptamer-ampicillin conjugate blocks the further immobilization of DNA-AuNPs and ssDNA-BP, and this leads to an increased response. The method has a linear reposne that convers the 1 pM to 5 nM ampicillin concentration range, with a 0.38 pM detection limit (at an S/N ratio of 3). The assay is selective, stable and reproducible. It was applied to the determination of ampicillin in spiked milk samples where it gave recoveries ranging from 95.5 to 105.5%.
Graphical abstract Schematic of a simple and sensitive electrochemical apta-biosensor for ampicillin detection. It is based on the use of gold nanoparticles (AuNPs), DNA aptamer, DNA functionalized AuNPs (DNA-AuNPs), and single-strand DNA binding protein (SSBP).
  相似文献   

3.
In the present paper, we used single-stranded poly-T (100% thymine bases) and poly-C (100% cytosine bases) nucleic acids as DNA probes for selective and sensitive individual electrochemical determination of Hg2+ and Ag+, respectively, on the multi-walled carbon nanotube paste electrodes (MWCNTPEs) using [Fe(CN)6]3?/4? as electroactive labels. In the presence of Hg2+ and Ag+, the probe–Hg2+/Ag+ interactions through T–Hg2+–T and C–Ag+–C complexes formation could cause the formation of a unimolecular hybridized probe. This structure of probe led to its partial depletion from electrode surface and facilitation of electron transfer between [Fe(CN)6]3?/4? redox couple and electrode surface, resulting in the enhanced differential pulse voltammetry (DPV) oxidation current of [Fe(CN)6]3?/4? at the probe-modified electrode surface. We applied the difference in the oxidation peak currents of [Fe(CN)6]3?/4? before and after Hg2+/Ag+–DNA probe bonding (?I) for electrochemical determination of these heavy metal ions. Detection limits were 8.0?×?10?12 M and 1.0?×?10?11 M for Hg2+ and Ag+ ions determination, respectively. The biosensors were utilized to determine the weight percent of toxic metals, i.e., silver and mercury in dental amalgam filling composition. The results of their practical applicability in analysis of the amalgam sample were satisfactory.  相似文献   

4.
In this work, we present the application of an exfoliated graphite electrode modified with gold nanoparticles (AuNPs) for the detection of As(III) in acidic media. Gold nanoparticles were deposited on the surface of an exfoliated graphite electrode by electrodeposition at a potential window of ?0.2 V to 1.2 V. This was followed by activation in 0.5 M H2SO4 with 10 cycles from 0.6 V to 1.4 V. The modification of exfoliated graphite (EG) showed an increased electroactive surface area of the electrode and improved peak current output in a Fe(CN)63?/4? redox probe. EG‐AuNPs electrode was used to detect As(III) in 1.0 M HNO3 using square wave anodic stripping voltammetry (SWASV) technique at optimum conditions of pH 3, deposition potential of ?0.8 V, deposition time of 180 s, frequency of 5 Hz and pulse amplitude of 50 mV. The EG‐AuNPs electrode detected As(III) in solution to a limit of 0.58 ppb with regression of 0.9993. The method reported is simple, cheap and possesses good reproducibility. The developed electrochemical sensor was applied in the detection of As (III) in an industrial real water sample. The results of the real water sample analysis from the developed method are comparable with the inductively coupled plasma – optical emission spectroscopy (ICP‐OES) results.  相似文献   

5.
A new electrochemical PNA hybridization biosensor for detection of a 15‐mer sequence unique to p53 using indigo carmine (IC) as an electrochemical detector is described in this work. This genosensor is based on the hybridization of target oligonucleotide with its complementary probe immobilized on the gold electrode by self‐assembled monolayer formation. Because this label is electroactive in acidic medium, the interaction between IC and short sequence of p53 is studied by differential pulse voltammety (DPV) in 0.1 M H2SO4. The results of electrochemical impedance spectroscopy and cyclic voltammetry in the solution of [Fe(CN)6]3?/4? shows no breakage in PNA‐DNA duplex. A decrease in the voltammetric peak currents of IC is observed upon hybridization of the probe with the target DNA. The influence of probe concentration on effective discrimination against non‐complementary oligonucleotides is investigated and a concentration of 10?7 M is selected. The diagnostic performance of the PNA sensor is described and the detection limit is found to be 4.31×10?12 M.  相似文献   

6.
A DNA‐based biosensor was reported for detection of silver ions (Ag+) by electrochemical impedance spectroscopy (EIS) with [Fe(CN)6]4?/3? as redox probe and hybridization chain reaction (HCR) induced hemin/G‐quadruplex nanowire as enhanced label. In the present of target Ag+, Ag+ interacted with cytosine‐cytosine (C? C) mismatch to form the stable C? Ag+? C complex with the aim of immobilizing the primer DNA on electrode, which thus triggered the HCR to form inert hemin/G‐quadruplex nanowire with an amplified EIS signal. As a result, the DNA biosensor showed a high sensitivity with the concentration range spanning from 0.1 nM to 100 µM and a detection limit of 0.05 nM.  相似文献   

7.
8.
《Electroanalysis》2003,15(22):1756-1761
Mercaptoundecanoic acid (MUA) and glutathione (GSH) self‐assembled monolayers were prepared on gold‐ wire microelectrode. Cyclic voltammetry was used to investigate the influence of temperature on electrochemical behaviors of Fe(CN)63?/4? and Ru(NH3)63+/2+ at these SAMs modified electrodes in aqueous solution. It is found that temperature shows great influence on electron transfer (ET) and mass transport (MT) for the two SAMs modified electrodes and the influence of temperature depends on the charge properties of the redox couples and terminal groups of SAMs and the structure of the monolayer on gold surface. The temperature can greatly increase MT rate of Fe(CN)63?/4? at both MUA and GSH modified electrodes. However, the increased MT rate doesn't have any effect on the CV's for Fe(CN)63?/4? /MUA system. For Ru(NH3)63+/2+ , temperature can greatly improve the electrochemical reaction in both MUA and GSH modified electrodes, which is ascribed to temperature‐induced diffusion and convection and the electrostatic interaction between Ru(NH3)63+/2+ and negatively charged carboxyl groups on the electrode surface.  相似文献   

9.
The surface of a gold (Au) disk electrode was modified with a self‐assembled monomolecular layer of dithiobis(4‐butylamino‐m‐phenylboronic acid) (DTBA‐PBA) to prepare L ‐lactate‐sensitive electrodes. The DTBA‐PBA‐modified electrodes exhibited an attenuated cyclic voltammogram (CV) for the Fe(CN)63? ion in the presence of L ‐lactate, as a result of the formation of phenylboronate ester of L ‐lactate accompanied with the addition of OH? ion to the boron atom. In other words, the negatively charged DTBA‐PBA monolayer blocked the electrode surface from the access of the Fe(CN)63?/4? ions. Thus, the DTBA‐PBA monolayer‐modified Au electrode can be used for determining L ‐lactate on the basis of the change in redox current of Fe(CN)63?/4? ions. The calibration graph useful for determining 1–30 mM L ‐lactate was obtained.  相似文献   

10.
We report a simple and effective strategy for fabrication of the nanocomposite containing chitosan (CS) and multiwall carbon nanotube (MWNT) coated on a glassy carbon electrode (GCE). The characterization of the modified electrode (CS‐MWNT/GC) was carried out using scanning electron microscopy (SEM) and UV–vis absorption spectroscopy. The electrochemical behavior of CS‐MWNT/GC electrode was investigated and compared with the electrochemical behavior of chitosan modified GC (CS/GC), multiwalled carbon nanotube modified GC (MWNT/GC) and unmodified GC using cyclic voltammetry (CV) and electron impedance spectroscopy (EIS). The chitosan films are electrochemically inactive; similar background charging currents are observed at bare GC. The chitosan films are permeable to anionic Fe(CN)63?/4? (FC) redox couple. Electrochemical parameters, including apparent diffusion coefficient for the Fe(CN)63?/4? redox probe at FC/CS‐MWNT/GC electrode is comparable to values reported for cast chitosan films. This modified electrode also showed electrocatalytic effect for the simultaneous determination of D‐penicillamine (D‐PA) and tryptophan (Trp). The detection limit of 0.9 μM and 4.0 μM for D‐PA and Trp, respectively, makes this nanocomposite very suitable for determination of them with good sensitivity.  相似文献   

11.
A sensitive, label free electrochemical aptasensor for ATP detection   总被引:1,自引:0,他引:1  
Wang Li  Xiahong Xu  Shouzhuo Yao 《Talanta》2009,78(3):954-249
A sensitive, label free electrochemical aptasensor for small molecular detection has been developed in this work based on gold nanoparticles (AuNPs) amplification. This aptasensor was fabricated as a tertiary hybrid DNA-AuNPs system, which involved the anchored DNA (ADNA) immobilized on gold electrode, reporter DNA (RDNA) tethered with AuNPs and target-responsive DNA (TRDNA) linking ADNA and RDNA. Electrochemical signal is derived from chronocoulometric interrogation of [Ru(NH3)6]3+ (RuHex) that quantitatively binds to surface-confined DNA via electrostatic interaction. Using adenosine triphosphate (ATP) as a model analyte and ATP-binding aptamer as a model molecular reorganization element, the introduction of ATP triggers the structure switching of the TRDNA to form aptamer-ATP complex, which results in the dissociation of the RDNA capped AuNPs (RDNA-AuNPs) and release of abundant RuHex molecules trapped by RDNA-AuNPs. The incorporation of AuNPs in this strategy significantly enhances the sensitivity because of the amplification of electrochemical signal by the RDNA-AuNPs/RuHex system. Under optimized conditions, a wide linear dynamic range of 4 orders of magnitude (1 nM-10 μM) was reached with the minimum detectable concentration at sub-nanomolar level (0.2 nM). Those results demonstrate that our nanoparticles-based amplification strategy is feasible for ATP assay and presents a potential universal method for other small molecular aptasensors.  相似文献   

12.
Here we report a technique to perform thin layer spectroelectrochemistry using an aqueous microdrop. The chemical systems used to demonstrate the aqueous microdrop technique were an absorption based ionic probe [Fe(CN)6]3?/4? and an emission based ionic probe [Ru(bpy)3]3+/2+. The ability of the technique to perform semi‐infinite linear diffusion spectroelectrochemistry on an aqueous microdrop has been previously demonstrated; in this work we were able to demonstrate spectroelectrochemical behavior consistent with the restricted diffusion in a thin layer cell by reducing the analyte volume and the optical path length. The thin‐layer diffusion behavior was illustrated by substantial reduction in peak‐to‐peak separations of the cyclic voltammograms and the significant decrease in electrolysis time compared to the semi‐infinite linear diffusion behavior.  相似文献   

13.
An electrochemical DNA sensing film was constructed based on the multilayers comprising of poly‐L ‐lysine (pLys) and Au‐carbon nanotube (Au‐CNT) hybrid. A precursor film of mercaptopropionic acid (MPA) was firstly self‐assembled on the Au electrode surface. pLys and Au‐CNT hybrid layer‐by‐layer assembly films were fabricated by alternately immersing the MPA‐modified electrode into the pLys solution and Au‐CNT hybrid solution. Cyclic voltammetry was used to monitor the consecutive growth of the multilayer films by utilizing [Fe(CN)6]3?/4? and [Co(phen)3]3+/2+ as the redox indicators. The outer layer of the multilayer film was the positively charged pLys, on which the DNA probe was easily linked due to the strong electrostatic affinity. The hybridization detection of DNA was accomplished by using methylene blue (MB) as the indicator, which possesses different affinities to dsDNA and ssDNA. Differential pulse voltammetry was employed to record the signal response of MB and determine the amount of the target DNA sequence. The established biosensor has high sensitivity, a relatively wide linear range from 1.0×10?10 mol/L to 1.0×10?6 mol/L and the ability to discriminate the fully complementary target DNA from single or double base‐mismatched DNA. The sequence‐specific DNA related to phosphinothricin acetyltransferase gene from the transgenically modified plants was successfully detected.  相似文献   

14.
An electrochemical study of Au electrodes electrografted with azobenzene (AB), Fast Garnet GBC (GBC) and Fast Black K (FBK) diazonium compounds is presented. Electrochemical quartz crystal microbalance, ellipsometry and atomic force microscopy investigations reveal the formation of multilayer films. The elemental composition of the aryl layers is examined by X‐ray photoelectron spectroscopy. The electrochemical measurements reveal a quasi‐reversible voltammogram of the Fe(CN)63?/4? redox couple on bare Au and a sigmoidal shape for the GBC‐ and FBK‐modified Au electrodes, thus demonstrating that electron transfer is blocked due to the surface modification. The electrografted AB layer results in strongest inhibition of the Fe(CN)63?/4? response compared with other aryl layers. The same tendencies are observed for oxygen reduction; however, the blocking effect is not as strong as in the Fe(CN)63?/4? redox system. The electrochemical impedance spectroscopy measurements allowed the calculation of low charge‐transfer rates to the Fe(CN)63? probe for the GBC‐ and FBK‐modified Au electrodes in relation to bare Au. From these measurements it can be concluded that the FBK film is less compact or presents more pinholes than the electrografted GBC layer.  相似文献   

15.
A strategy for the detection of anthrax, which is a potential biological weapon by using an electrochemical genosensing technology, is investigated. An alkanathiol‐linked or unlabeled capture probe related to B. anthracis is immobilized onto gold or graphite electrode surface. A 101‐mer anthrax target is used for hybridization. The extent of hybridization between probe and target sequences is determined by using differential pulse voltammetry (DPV) and electrochemical impedance spectrometry (EIS). EIS analysis are based on electron transfer resistance (Rct) in the presence of [Fe(CN)6]3?/4? and DPV measurements are based on transduction of both guanine oxidation and Meldola's blue (MDB) reduction signal as hybridization indicator. The response of the probe‐modified electrodes which was interacted with a noncomplementary sequence was the same as the responses of probe‐modified surface and proved the specifity of the hybridization with the target. According to these results the developed genosensors based on EIS and DPV techniques can be employed for rapid and selective detection of B. anthracis.  相似文献   

16.
Meng Du 《Talanta》2010,81(3):1022-25
This paper described a novel electrochemical DNA biosensor for rapid specific detection of nucleic acids based on the sulfonated polyaniline (SPAN) nanofibre and cysteamine-capped gold nanoparticle (CA-GNP) layer-by-layer films. A precursor film of 3-mercaptopropionic acid (MPA) was firstly self-assembled on the Au electrode surface. CA-GNP was covalently deposited on the Au/MPA electrode to obtain a stable substrate. SPAN nanofibre and CA-GNP were alternately layer-by-layer assembled on the stable substrate by electrostatic force. Cyclic voltammetry was used to monitor the consecutive growth of the multilayer films by utilizing [Fe(CN)6]3−/4− as the redox indicator. The (CA-GNP/SPAN)n films showed satisfactory ability of electron transfer and excellent redox activity in neutral media. Negatively charged probe ssDNA was immobilized on the outer layer of the multilayer film (CA-GNP) through electrostatic affinity. Chronopotentiometry and electrochemical impedance spectroscopy were employed to obtain the direct electrochemical readout for probe ssDNA immobilization and hybridization using [Fe(CN)6]3−/4− in solution as the mediator. While electrochemical impedance spectroscopy led to the characterization of the electron-transfer resistance at the electrode, chronopotentiometry provided the total resistance at the interfaces of the modified electrodes. A good correlation between the total electrode resistances and the electron-transfer resistances at the conducting supports was found. Chronopotentiometry was suggested as a rapid transduction means (a few seconds). Based on the (CA-GNP/SPAN)n films, the target DNA with 20-base could be detected up to 2.13 × 10−13 mol/L, and the feasibility for the detection of base-mismatched DNA was also demonstrated.  相似文献   

17.
Cu2+ is reduced in the presence of nitroprusside to form two Cu(I) reduced nitroprusside species at about +0.050 V (pH 7.6). These species are reduced further at about −0.60 V. The two species are formed by an EC mechanism, and the species are believed to be [CuIFe(CN)4NO], which predominates in acidic solution, and [CuIFe(CN)5NO]2−, which predominates in alkaline solution. These conclusions are supported by cyclic voltammetric and bulk electrolysis/coulometric experiments.  相似文献   

18.
A new thiol-derivatized metalloporphyrin, 5-{3-methoxyl-4-(4-mercaptobutoxy)}phenyl-10,15,20-triphenylporphyrincobalt (MBPPCo), has been synthesized. The electrochemical behavior of unitary or binary self-assembled monolayers (SAMs) of MBPPCo and thiols with carboxylic terminal groups was investigated using Fe(CN)6 3−/4− and ascorbic acid (AA) as probe species. The binary modified electrode showed a small increase in peak current but a large decrease in overpotential. However, in anionic electroactive species [Fe(CN)6 3−/4− or AA], either positively charged MBPPCo or negatively charged thiol SAMs solely, slow electron transfer kinetics was obtained and the possible reasons for the discrepancy are discussed.  相似文献   

19.
A new electrochemiluminescence (ECL) method based on the proximity-dependent surface hybridization assay and Ru(bpy)32+-doped silica nanoparticles (Ru-DSNPs) as labels were proposed for detecting DNA. The hybridization process involves two steps: firstly, the 3′ thiolated capture probe was self-assembled on the gold electrode. Secondly, the proximity-dependent surface hybridization assay was carried out. This proximity-dependent surface hybridization assay depended on the simultaneous recognition of a target DNA by a capture probe and Ru-DSNP-labeled probe and the formation of a duplex complex, which results in the luminophor approach to the electrode surface. Thus, sensitive ECL signals were obtained. Under optimum conditions, the intensity of the ECL of Ru-DSNPs was linearly related to the concentration of the target sequence in the range of 2.0 × 10−15 to 2.0 × 10−11 mol/L. The detection limit was 1.0 × 10−15 mol/L (S/N = 3).  相似文献   

20.
A specially designed thermo-electrochemical calorimeter was applied to measure the electrochemical Peltier heats (EPH) of Fe(CN) 6 3?/4? system at 295.15 K. The curves of the electrode potential changes and temperature changes against time for Fe(CN) 6 3?/4? couple with five groups of different concentrations were obtained under the condition of various constant-current polarizations. The EPH values for the considered electrode reaction are determined to be ?41.31, ?42.73, ?44.28, ?45.87, and ?46.65 kJ mol?1 at the respective concentrations of 0.125, 0.175, 0.225, 0.275, and 0.300 mol dm?3; and the EPH and the apparent enthalpy change corresponding to the infinite dilution to be ?37.42 and ?84.10 kJ mol?1 at 295.15 K, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号