首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
制备了两种表面Schiff碱及其Cu2+、Co2+、Ni2+、Zn2+配合物,考察了它们对H2O2分解的催化性能,其活性顺序为:Co2+>Cu2+>Ni2+>Zn2+,且与金属离子氧化还原电位有关。溶液的pH值增加有利于催化反应,有机配体的加入则对反应有所抑制。  相似文献   

2.
The complexes formed by the chemically modified chloromethylated poly(styrene)-PAN (CMPS-PAN) as a resin chelating ion exchanger were characterized by infrared and potentiometry. The thermal degradation of pure CMPS-PAN resin and its complexes with Au3+, Cr3+, Cu2+, Fe3+, Mn2+ and Pt4+ in air atmosphere has been studied using thermal gravimetry (TG) and derivative thermal gravimetry (DTG). The results showed that four different steps accompany the decomposition of CMPS-PAN resin and its complexes with the metal ions. These stages were affected by the presence of the investigated metal ions. The thermal degradation of CMPS-PAN resin in the presence of the ions showed different stability of the resin in the following decreasing order: Au3+>Pt4+>Mn2+>Cu2+>Cr3+>Fe3+. On the basis of the applicability of a non-isothermal kinetic equation, the decomposition process was a first-order reaction. The activation energy, Ea, the entropy change, ΔS *, the enthalpy change, ΔH * and the Gibbs free energy of activation, ΔG * were calculated by applying the theory of the reaction rates. The effect of the different central metal ions on the calculated thermodynamic activation parameters was discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
In a stirred batch experiment and under aerobic conditions, ferroin (Fe(phen)32+) behaves differently from Ce(III) or Mn(II) ion as a catalyst for the Belousov‐Zhabotinsky (BZ) reaction with allylmalonic acid (AMA). The effects of bromate ion, AMA, metal‐ion catalyst, and sulfuric acid on the oscillating pattern were investigated. The kinetics of the reaction of AMA with Ce(IV), Mn(III), or Fe(phen)33+ ion was studied under aerobic or anaerobic conditions. The order of reactivity of metal ions toward reaction with AMA is Fe(phen)33+ > Mn(III) > Ce(IV) under aerobic conditions whereas it is Mn(III) > Ce(IV) > Fe(phen)33+ under anaerobic conditions. Under aerobic or anaerobic conditions, the order of reactivity of RCH(CO2H)2 (R = H (MA), Me (MeMA), Et (EtMA), allyl (AMA), n‐Bu (BuMA), Ph (PhMA), and Br (BrMA)) is PhMA > MA > BrMA > AMA > MeMA > EtMA > BuMA toward reaction with Ce(IV) ion and it is MA > PhMA > BrMA > MeMA > AMA > EtMA > BuMA toward reaction with Mn(III) ion. Under aerobic conditions, the order of reactivity of RCH(CO2H)2 toward reaction with Fe(phen)33+ ion is PhMA > BrMA > (MeMA, AMA) > (BuMA, EtMA) > MA. The experiment results are rationalized.  相似文献   

4.
《Comptes Rendus Chimie》2017,20(1):20-29
Acid catalysts including Ni, Ag and Fe-loaded zeolites of different structures were prepared either via cationic exchange or impregnation techniques from pristine H-zeolites (BEA, and MFI). Their catalytic activity was evaluated in the liquid-phase Friedel–Crafts acylation of anisole with propanoic acid. It turned out that, whatever the doping procedure was, the zeolite loaded with transition metals led to considerable decrease in propanoic acid conversion, regardless of the nature or the metal content. However, the extent of this detrimental effect followed the order: Ag+ > Ni2+ > Fe3+.Pristine acidic zeolites were not only found to be the most active, but also to be the most selective toward ortho- and para-acylation products. H-ZSM-5 zeolites yielded the highest intrinsic activity, with TOF values of 0.09 h−1. The catalyst activity proved to be essentially attributed to the density and accessibility of Brønsted acid sites, playing a key role in the activation of the reactants. Brønsted sites are proposed to be the most likely catalytic species for performing this Friedel–Crafts acylation.  相似文献   

5.
The effect of sulfuric acid concentration on Cl2 evolution in the reaction between O3 and Cl? has been investigated. The catalytic effects of metal ions in this reaction have been studied as a function of solution acidity. The chlorine evolution rate increases markedly with increasing acid concentration. At acid concentrations below 4 mol/l, the most effective catalyst is Co2+. The catalytic activities of Fe3+ and Cu2+ peak at $C_{H_2 SO_4 } $ = 4.8 mol/l. In passing to highly acidic solutions ( $C_{H_2 SO_4 } $ > 5 mol/l), the catalytic activity of the metal ions decreases, but the chlorine evolution rate remains high owing to the high acidity. Kinetics of VO2+ oxidation with ozone in acid media have been studied, and the ozone solubility in aqueous sulfuric acid has been measured.  相似文献   

6.
A highly efficient catalyst Fe–Co/sulfonated polystyrene (Fe–Co/SPS) was introduced and synthesized, which catalyzed BV oxidation of ketones with aqueous hydrogen peroxide to give the corresponding lactones in high yield and selectivity. Solid acid catalyst of Fe–Co/SPS has been prepared by using the 98-wt% sulfuric acid as the sulfonating agent and CoCl2 combined FeCl3 as sources of metal ions. Various physical–chemical characterizations including FT-IR, XRD, SEM and TGA, revealed that bimetallic ions Fe3+–Co2+ species in the sulfonated polystyrene framework were responsible for the catalytic activities. The BV reaction catalyzed by Fe–Co/SPS highlighted the special effects between metal ions and protonic acids as well as solvent-free heterogeneous catalytic oxidation with excellent conversion.  相似文献   

7.
The oxidation of catechol by molecular oxygen in the presence of a catalytic amount of copper(II) complex with 2-methyl-3-amino-(3H)quinazoline-4-one (MAQ) and various anions (Cl, Br, ClO 4 , SCN, NO 3 and SO 4 ) was studied. The catecholase biomimetic catalytic activity of the copper(II) complexes has been determined spectrophotometrically by monitoring the oxidative transformation of catechol to the corresponding light absorbing o-quinone (Q). The rate of the catalytic oxidation reaction was investigated and correlated with the catalyst structure, time, concentration of catalyst and substrate and finally solvent effects. Addition of pyridine or Et3N showed a dramatic effect on the rate of oxidation reaction. Kinetic investigations demonstrate that the rate of oxidation reaction has a first order dependence with respect to the catalyst and catechol concentration and obeying Michaelis–Menten Kinetics. It was shown that the catalytic activity depends on the coordination environment of the catalyst created by the nature of counter anions bound to copper(II) ion in the complex molecule and follows the order: Cl > NO 3 > Br > SO 4 > SCN > ClO 4 . To further elucidate the catalytic activity of the complexes, their electrochemical properties were investigated and the catecholase mimetic activity has been correlated with the redox potential of the Cu2+/Cu+ couple in the complexes.  相似文献   

8.
Acrylic acid has been grafted from aqueous solution onto 70 μ isotactic polypropylene-film previously peroxidized by irradiating in air with both 400 keV electrons and γ-radiation from a 60Co source. Ferrous ion has been used to induce the redox decomposition of the macromolecular peroxy species at temperatures between 0 and 40°C. It has been shown that the effect of low [Fe2+] is to increase grafting rates, but that at [Fe2+] > 8 × 10?4 molal the retarding effect of the reducing ion becomes increasingly important. At constant [Fe2+] a pronounced maximum in rate is observed at around 50 wt-% of acrylic acid; this may be related to increased swelling of the polymer matrix at this point. The initial rate of grafting increases as the square root of the preirradiation dose and, in the preirradiation dose rate range, 1.6–8.0 Mrad/sec, is independent of the dose rate. The grafting rate during the later stages of the reaction, however, increases as the preirradiation dose rate decreases. In the temperature range 0–40°C, the overall activation energy is 19 kcal/mole; from this value, the activation energy of initiation has been estimated to be around 20 kcal/mole.  相似文献   

9.
The heterogeneous catalytic oxidation of Chromotrope 2B (C2B) dye with H2O2 and the aluminum oxide hydroxide (AlOOH) modified with ammonia complexes of CuII, CoII, NiII, and CrIII (AlOOH/[Mn+(amm)m]) as catalysts were studied. The AlOOH/[CuII(amm)4] is the most efficient catalyst and therefore it was chosen as the potential catalyst for the oxidative degradation of C2B in an aqueous solution. The AlOOH/[CuII(amm)4] was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and transmission electron microscopy (TEM), techniques. The rate of reaction was dependent on the type of the metal complex supported on the AlOOH, initial concentration of the dye and H2O2, catalyst dose, pH, the concentration of NaCl, and temperature. The catalytic activity of the AlOOH/[Mn+(amm)m] according to the kind of metal ion decreased in the order: CuII > CoII > CrIII > NiII. Other catalysts consisting of the AlOOH supported with CuII complexed with ethylenediamine, ethanolamine, 1,3 propanediamine, and 1,4 butanediamine, (AlOOH/[CuII(amine)m]), were also investigated. The activity of the (AlOOH/[CuII(amine)m]) as catalyst according to the type of ligand followed the order: 1,4 butanediamine > 1,3 propanediamine > ethanolamine > ethylenediamine > ammonia. The reaction rate increased with increasing the catalyst dose, concentration of H2O2, C2B, and NaCl, pH, and temperature. Since the reusability results for the AlOOH/[CuII(amm)4] revealed good stability over seven cycles, it can thus be considered a promising and cost-effective catalyst for the removal of harmful dyes from wastewater.  相似文献   

10.
The trivalent metal cations Al3+, Cr3+, and Fe3+ were each introduced, together with Sc3+, into MIL‐100(Sc,M) solid solutions (M=Al, Cr, Fe) by direct synthesis. The substitution has been confirmed by powder X‐ray diffraction (PXRD) and solid‐state NMR, UV/Vis, and X‐ray absorption (XAS) spectroscopy. Mixed Sc/Fe MIL‐100 samples were prepared in which part of the Fe is present as α‐Fe2O3 nanoparticles within the mesoporous cages of the MOF, as shown by XAS, TGA, and PXRD. The catalytic activity of the mixed‐metal catalysts in Lewis acid catalysed Friedel–Crafts additions increases with the amount of Sc present, with the attenuating effect of the second metal decreasing in the order Al>Fe>Cr. Mixed‐metal Sc,Fe materials give acceptable activity: 40 % Fe incorporation only results in a 20 % decrease in activity over the same reaction time and pure product can still be obtained and filtered off after extended reaction times. Supported α‐Fe2O3 nanoparticles were also active Lewis acid species, although less active than Sc3+ in trimer sites. The incorporation of Fe3+ into MIL‐100(Sc) imparts activity for oxidation catalysis and tandem catalytic processes (Lewis acid+oxidation) that make use of both catalytically active framework Sc3+ and Fe3+. A procedure for using these mixed‐metal heterogeneous catalysts has been developed for making ketones from (hetero)aromatics and a hemiacetal.  相似文献   

11.
The catalytic combustion of various organic compounds has been investigated over noble and non-noble metal catalysts using a fixed bed. It was concluded that the activity order of different organic compounds on a noble metal catalyst, is toluene > 2-butanone > benzene >n-heptane≈isopropyl alcohol > acrylonitrile > cyclohexane. On non-noble metal catalyst, it is isopropyl alcohol > 2-butanone > acrylonitrile > toluene >n-heptane > cyclohexane > benzene. In order to compare the thermal stability of catalysts, the catalytic reaction of toluene has been studied over noble and non-noble metal catalysts which were calcined at various temperatures up to 900°C for 3 h.  相似文献   

12.
In a stirred batch experiment, ferroin (Fe(phen)32+) behaves differently from Ce(III) as a catalyst for the Belousov-Zhabotinsky reaction with ethyl- or n-butyl-malonic acid (EtMA or BuMA) The effects of bromate ion, organic substrate, metal-ion catalyst, and sulfuric acid on the oscillating pattern were investigated. The kinetics of the reactions of methylmalonic acid (MeMA), bromomethyl-malonic acid (BrMeMA), EtMA, bromoethylmalonic acid (BrEtMA), BuMA, bromo(n-butyl)malonic acid (BrBuMA) with Ce(IV) or Fe(phen)33+ ion were studied. Under aerobic or anaerobic conditions, the order of reactivity toward Ce(IV) oxidation is MeMA > EtMA > BuMA > BrMeMA >> (BrEtMA, BrBuMA). Under aerobic conditions, the order of reactivity toward reacting with Fe(phen)33+ ion is MeMA > (BuMA, EtMA) >> (BrMeMA, BrEtMA, BrBuMA). The experimental results are rationalized. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Comprehensive studies combining surface science and real catalyst were performed to get further insight into catalytic active site and reaction mechanism for NO decomposition over supported palladium and cobalt oxide-based catalysts. On palladium single-crystal model catalysts, adsorption, dissociation and desorption behavior of NO was found to be closely related to the surface structures, the stepped surface palladium being active for dissociation of NO. In accordance with this result, the activity of powder Pd/Al2O3 catalysts for NO decomposition was directly related to the number of step sites exposed on the surface, suggesting that the step sites act as the catalytic active site for NO decomposition on Pd/Al2O3. NO decomposition over cobalt oxide was found to be significantly promoted by addition of alkali metals. Surface science study and catalyst characterization led to the same conclusion that the interface between the alkali metal and Co3O4 serves as the catalytic active site. From the results of in situ Fourier transform infrared (FT-IR) spectroscopy and isotopic transient kinetic analysis, a reaction mechanism was proposed in which the reaction is initiated by NO adsorption onto alkali metals to form NO2 species and then NO2 species react with the adsorbed NO species to form N2 over the interface between the alkali metal and Co3O4.  相似文献   

14.
The Ce(III)‐, Mn(II)‐, or ferroin (Fe(phen)32+)‐catalyzed reaction of bromate ion and pyruvic acid (PA) or its dimer exhibits oscillatory behavior. Both the open‐chain dimer (parapyruvic acid, γ‐methyl‐γ‐hydroxyl‐α‐keto‐glutaric acid, DPA1) and the cyclic‐form dimer (α‐keto‐γ‐valerolactone‐γ‐carboxylic acid, DPA2) show more sustained oscillations than PA monomer. Ferroin behaves differently from Ce(III) or Mn(II) ion in catalyzing these oscillating systems. The kinetics of reactions of PA, 3‐brompyruvic acid (BrPA), DPA1, or DPA2 with Ce(IV), Mn(III), Fe(phen)33+ ion were investigated. The order of relative reactivity of pyruvic acids toward reaction with Ce(IV), Mn(III), or Fe(phen)33+ ion is DPA2 > DPA1 > BrPA > PA and that of metal ions toward reaction with pyruvic acids is Mn(III) > Ce(IV) > Fe(phen)33+. The rates of bromination reactions of pyruvic acids are independent of the concentration of bromine and the order of reactivity toward bromination is (DPA1, DPA2) > BrPA > PA. Experimental results are rationalized. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 408–418, 2000  相似文献   

15.
In heterogeneous catalysis, supports play a crucial role in modulating the geometric and electronic structure of the active metal phase for optimizing the catalytic performance. A γ‐Al2O3 nanosheet that contains 27 % pentacoordinate Al3+ sites can nicely disperse and stabilize raft‐like Pt‐Sn clusters as a result of strong interactions between metal and support. Consequently, there are strong electronic interactions between the Pt and Sn atoms, resulting in an increase in the electron density of the Pt sites. When used in the propane dehydrogenation reaction, this catalyst displayed an excellent specific activity for propylene formation with >99 % selectivity, and superior anti‐coking and anti‐sintering properties. Its exceptional ability to maintain the high activity and stability at ultrahigh space velocities further showed that the sheet construction of the catalyst facilitated the kinetic transfer process.  相似文献   

16.
Montmorillonite-enwrapped titanium hydroxide species (Ti4+-mont) acted as a highly efficient heterogeneous acid catalyst for the acylation of aromatic compounds with acid anhydrides or carboxylic acids. The catalytic activity of the Ti4+-mont was higher than those of other acid catalysts such as zeolites, SO 4 2− /ZrO2 and p-toluenesulfonic acid. For example, the reaction of anisole with dodecanoic acid in the presence of the Ti4+-mont catalyst gave 1-(4-methoxyphenyl)-1-dodecanone in 97% yield. Furthermore, the Ti4+-mont catalyst was easily separated from the reaction mixture and was recyclable.  相似文献   

17.
The reaction kinetics for the oxidation of l ‐histidine by permanganate ions have been investigated spectrophotometrically in sulfuric acid medium at constant ionic strength and temperature. The order with respect to permanganate ions was found to be unity and second in acid concentration, whereas a fractional order is observed with respect to histidine. The reaction was observed to proceed through formation of a 1:1 intermediate complex between oxidant and substrate. The effect of the acid concentration suggests that the reaction is acid catalyzed. Increasing the ionic strength has no significant effect on the rate. The influence of temperature on the rate of reaction was studied. The presence of metal ion catalysts was found to accelerate the oxidation rate, and the order of effectiveness of the ions was Cu2+ > Ni2+ > Zn2+. The final oxidation products were identified as aldehyde (2‐imidazole acetaldehyde), ammonium ion, manganese(II), and carbon dioxide. Based on the kinetic results, a plausible reaction mechanism is proposed. The activation parameters were determined and discussed with respect to a slow reaction step.  相似文献   

18.
刘靖  王安琪  景欢旺 《催化学报》2014,35(10):1669-1675
金属离子掺杂纳米TiO2(M-TiO2,M=Zn2+,Cu2+,Co2+,Mn2+,Ni2+)在CO2与环氧化合物的偶联反应中表现出较高的催化活性.反应以四正丁基碘化铵(TBAI)为共催化剂,在无溶剂条件下进行.考察了反应温度、反应时间和CO2压力在Zn-TiO2/TBAI体系中对反应性能的影响.作为无毒的多相催化剂,Zn-TiO2可循环使用5次,其催化活性没有明显降低.  相似文献   

19.
The synthesis and characterization of nanostructured MoO3 with a thickness of about 30 nm and a width of about 450 nm are reported. The composition formula of the MP (precipitation method) precursor was estimated to be [(NH4)2O]0.169?MoO3? (H2O)0.239. The calcination of the precursor in air afforded nanostructured pellets of the α‐MoO3 phase. The nanostructured MoO3 catalyst exhibited high efficiency in catalyzing the benzylation of various arenes with substituted benzyl alcohols, which were strikingly different to common bulk MoO3. Most reactions offered >99 % conversion and >99 % selectivity to monoalkylated compounds. MoO3 is a typical acid catalyst. However, the benzylation reaction over nanostructured MoO3 does not belong to the acid‐catalyzed type or defect site‐catalyzed type, since the catalyst has no acidity and defect site on surface. Characterization with thermal, spectroscopic, and electronic techniques reveal that the catalyst contains fully oxygen‐coordinated MoO6 octahedrons on the surface but partially reduced species (Mo5+) within the bulk phase. The terminal oxygen atoms of Mo?O bonds on the (010) basal plane resemble oxygen anion radicals and act as active sites for the adsorption and activation of benzyl alcohols by electrophilic attack. Such sites are indispensable for catalytic reactions since the blocking of these sites by electron acceptors, such as tetracyanoethylene (TCNE), can greatly decrease catalytic activity. This work represents a successful example of combining a heterogeneous catalysis study with nanomaterial synthesis.  相似文献   

20.
Homocysteine (Hcy) and cysteine (Cys) mercury thiolate layers were prepared by anodic polarization of a mercury electrode in amino acid containing solutions and then investigated in the cathodic regime in the presence of Ni2+ or Co2+ ions. The sulfhydryl function in the mercury thiolate undergoes a slow disintegration resulting in surface‐attached mercury sulfide. During the cathodic scan, Hg2+ substitution by Ni2+ or Co2+ yields minute amounts of the relevant metal sulfide. Such a species catalyzes hydrogen evolution at ?1.3 V vs. Ag|AgCl|KCl(3 M). Hcy experiences a faster decomposition and, consequently, displays a stronger catalytic effect. Each compound catalyzes the reduction of Ni2+ or Co2+, but only Cys (bound in metal complexes) induces typical catalytic hydrogen evolution processes such as the Brdi?ka reaction (with Co2+; pH around 9), or the catalytic hydrogen prewave (CHP) (with Ni2+; pH near 7). On the other hand, Hcy catalyzes the hydrogen evolution in the presence of Co2+ at ?1.5 V in the same way than sulfur derivatives with no amine function do. Metal sulfide formation does not interfere with CHP and Brdi?ka processes. Correlations between the physical state of the metal sulfide (adsorbed molecule or aggregate form) and its catalytic properties are discussed and possible analytical applications suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号