首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The Schiff bases a-(C5H4N)CMe=NNHCOR (R = Ph, 2-thienyl or Me), prepared by condensation of 2-acetylpyridine with the acylhydrazines RCONHNH2, coordinate in the deprotonated iminol form to yield the octahedral complexes, M[NNO]2 M = Co or Ni; [NNOH] = Schiff base and the square-planar complexes, Pd[NNO]Cl. The Schiff bases also coordinate in the neutral keto form yielding the octahedral complexes (M[NNOH]2)Z2 (M = Ni, Co or Fe; Z = C104, BF4 or N03) and complexes of the type M[NNOH]X2 (M = Ni, Co, Fe or Cu; X = Cl, Br or NCS). Spectral and x-ray diffraction data indicate that the complexes M[NNOH]X2 (M = Ni or Fe) are polymeric octahedral, as are the corresponding cobalt complexes having R = 2-thienyl. However, the cobalt complexes Co[NNOH]X2 (X = CI or Br; R = Ph or Me) and the copper complexes Cu[NNOH]CI2 (R = Ph, 2-thienyl or Me) are five-coordinate, while the thiocyanato complex Co[NNOH](NCS)2 (R = 2-thienyl) is tetrahedral.  相似文献   

2.
Summary Two new quadridentate sulphur-nitrogen chelating agents have been prepared and characterized. These ligands yield stable complexes of general formulae, M(ONNS)·xH2O (M=Ni, Cu, Zn, Cd, Pd and Pt; ONNS–2=ligand dianion; x=0, 1 or 2) and M(ONNS)X (M=Co or Fe; X=Cl or AcO). The nicke(II) complexes are diamagnetic and squareplanar. Based on magnetic and spectral data a square-planar structure is also assigned to the copper(II) complexes. The iron(III) complexes, Fe(ONNS)Cl are high-spin and five-coordinate. Magnetic and spectral evidence support an octahedral structure for the cobalt(III) complex, Co(ONNS)OAc.  相似文献   

3.
Tridentate chelate complexes M[LX?·?2H2O], where M?=?Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) have been synthesized from the Schiff base L?=?N-[1-(3-aminopropyl)imidazole]salicylaldimine and X?=?Cl. Microanalytical data, UV-Vis, magnetic susceptibility, IR, 1H-NMR, mass, and EPR techniques were used to confirm the structures. Electronic absorption spectra and magnetic susceptibility measurements suggest square-planar geometry for copper complex and octahedral for other metal complexes. EPR spectra of copper(II) complex recorded at 300?K confirm the distorted square-planar geometry of the copper(II) complex. Biological activities of the ligand and metal complexes have been studied on Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans by the well diffusion method. The activity data show the metal complexes to be more potent than the parent ligand against two bacterial species and one fungus. The electrochemical behavior of the copper complex was studied by cyclic voltammetry.  相似文献   

4.
A series of new Co(II), Ni(II), and Cu(II) complexes of Schiff base derived from coumarin have been prepared and characterized by analytical and spectral methods. The Schiff base is synthesized by the condensation of 2,6-diaminopyridine and 3-acetylcoumarin in 1 : 1 stoichiometric ratio. All complexes have 1 : 1 metal : ligand ratio except the nickel complex, where it was found to be 1 : 2. UV-Vis spectra and magnetic moment studies confirm the existence of tetrahedral and octahedral geometries around cobalt(II) and nickel(II) metal ions, respectively, but copper(II) chloride/nitrate/sulfate complexes have square-planar geometry and copper(II) acetate complex is distorted octahedral. ESR spectra of copper complexes at room temperature and liquid nitrogen temperature were tetragonal. All the complexes were found to be more active against bacteria except Ni(II) complex; only CuLSO4 and CuL(CH3COO)2 have shown the enhanced activity against fungi.  相似文献   

5.
A series of binuclear Co(II), Ni(II) and Cu(II) complexes were synthesized by the template condensation of glyoxal, biacetyl or benzil bis-hydrazide, 2,6-diformyl-4-methylphenol and Co(II), Ni(II) or Cu(II) chloride in a 2:2:2 M ratio in ethanol. These 22-membered macrocyclic complexes were characterized by elemental analyses, magnetic, molar conductance, spectral, thermal and fluorescence studies. Elemental analyses suggest the complexes have a 2:1 stoichiometry of the type [M2LX2nH2O and [Ni2LX22H2O]·nH2O (where M = Co(II) and Cu(II); L = H2L1, H2L2 and H2L3; X = Cl; n = 2). From the spectroscopic and magnetic studies, it has been concluded that the Co(II) and Cu(II) complexes display a five coordinated square pyramidal geometry and the Ni(II) complexes have a six coordinated octahedral geometry. The Schiff bases and their metal complexes have also been screened for their antibacterial and antifungal activities by the MIC method.  相似文献   

6.
The Schiff base N-crotonyl-2-hydroxyphenylazomethine HL, derived from the reaction of acrylamide and salicylaldehyde, was synthesised. Polymeric complexes were obtained from the reaction of polymeric HL with divalent metals. The mode of bonding and overall geometry of the complexes were determined through physico-chemical and spectroscopic methods and compared with that previously reported for the analogous monomeric ligand. These studies revealed tetrahedral geometries around the metal centres for Mn(II), Co(II), Zn(II), Cd(II) and Hg(II) complexes of general formula [M(L)Cl], octahedral for Ni(II) and Cu(II) complexes of general formula [M′(L)Cl(H2O)2], and square planar for Pd(II) complex of general formula [Pd(L)Cl].  相似文献   

7.
Summary Cobalt(II) and copper(II) halide, nitrate, thiocyanate and perchlorate complexes of 3-amino-5-methylisoxazole (3-AMI) have been prepared and characterized by means of magnetic, spectroscopic and molar conductivity measurements. In Cu(3-AMI)2X2 compounds (X = Cl, Br, N02) the 3-AMI ligand is bridging and bidentate [N (ring), O(bonded)]. In the other derivatives it is monodentate [N(ring) bonded]. All cobalt(II) complexes have an octahedral stereochemistry, if the Co(3-AMI)2X2 derivatives (X = Cl, Br), which are tetrahedral, are excluded. Copper(II) complexes have generally a distorted square pyramidal stereochemistry in the solid state and in solution.  相似文献   

8.
The heterovalent trinuclear cobalt complexes [Co2IIIL4 i · CoII(H2O)4] · nXmY (L i are deprotonated Schiff bases derived from substituted salicylaldehydes and β-alanine; i = 1–3) were obtained and characterized. An X-ray diffraction study of the trinuclear cobalt complex with N-(2-carboxyethyl)salicylaldimine showed that the central Co(II) ion and the terminal Co(III) ions are linked by bridging carboxylate groups. Either terminal Co(III) atom is coordinated to two ligand molecules. They form an octahedral environment consisting of two azomethine N atoms, two phenolate O atoms, and two O atoms of two carboxylate groups. The central Co(II) atom is coordinated to four water molecules and to two O atoms of two bridging carboxylate ligands involved in the coordination sphere of the terminal Co(III) atoms.  相似文献   

9.
《印度化学会志》2021,98(6):100080
Two octahedral complexes [NiL(HL)]ClO4.0.5CH3OH and [CoL2]ClO4 have been synthesized with N2O donor Schiff base ligand {((2-(phenylamino)ethyl)imino)methyl}phenol (HL) and characterized by spectroscopic techniques and single crystal X-ray diffraction studies. The molar conductivities data of the two complexes show that the complexes are 1:1 electrolyte. Single crystal X-ray diffraction data shows both Ni(II) and Co(III) complexes have distorted octahedral geometry and two ligands are coordinated to the metal centers and one ClO4 ion outside the coordination sphere. The intermolecular interactions in the complexes are evaluated by Hirshfeld surface analysis and revealed a significant contribution of non- or weakly polar interactions to the packing forces for both molecules, with crystal structure of Co(III) complex featuring short H/H contacts.  相似文献   

10.
New Co(II), Ni(II), and Cu(II) complexes were synthesized with the Schiff base ligand obtained by the condensation of sulfathiazole with salicylaldehyde. Their characterization was performed by elemental analysis, molar conductance, spectroscopic techniques (IR, diffuse reflectance and UV–Vis–NIR), magnetic moments, thermal analysis, and calorimetry (thermogravimetry/derivative thermogravimetry/differential scanning calorimetry), while their morphological and crystal systems were explained on the basis of powder X-ray diffraction results. The IR data indicated that the Schiff base ligand is tridentate coordinated to the metallic ion with two N atoms from azomethine group and thiazole ring and one O atom from phenolic group. The composition of the complexes was found to be of the [ML2]∙nH2O (M = Co, n = 1.5 (1); M = Ni, n = 1 (2); M = Cu, n = 4.5 (3)) type, having an octahedral geometry for the Co(II) and Ni(II) complexes and a tetragonally distorted octahedral geometry for the Cu(II) complex. The presence of lattice water molecules was confirmed by thermal analysis. XRD analysis evidenced the polycrystalline nature of the powders, with a monoclinic structure. The unit cell volume of the complexes was found to increase in the order of (2) < (1) < (3). SEM evidenced hard agglomerates with micrometric-range sizes for all the investigated samples (ligand and complexes). EDS analysis showed that the N:S and N:M atomic ratios were close to the theoretical ones (1.5 and 6.0, respectively). The geometric and electronic structures of the Schiff base ligand 4-((2-hydroxybenzylidene) amino)-N-(thiazol-2-yl) benzenesulfonamide (HL) was computationally investigated by the density functional theory (DFT) method. The predictive molecular properties of the chemical reactivity of the HL and Cu(II) complex were determined by a DFT calculation. The Schiff base and its metal complexes were tested against some bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis). The results indicated that the antibacterial activity of all metal complexes is better than that of the Schiff base.  相似文献   

11.
[2 + 2] Condensation between 3,4-diaminobenzophenone and benzil in a 1:1 molar ratio in methanol at room temperature resulted in the formation of a novel Schiff base tetraimine macrocyclic ligand, (L): 5,6;11,12-dibenzophenone-2,3;8,9-tetraphenyl-1,4,7,10-tetraazacyclo-dodeca-1,3,7,9-tetraene. The macrocyclic complexes of the type, [FeLCl2]Cl and [MLCl2] [M = Co(II) and Cu(II)] have been prepared by reacting iron(III) chloride or metal(II) chlorides with the ligand, L in 1:1 molar ratio in methanol. The stoichiometry corresponding to the formation of the ligand framework, L was ascertained on the basis of results of elemental analyses,1H-NMR and FAB-mass measurements while that of complexes were ascertained by results of elemental analyses and in solution by Job’s method. The mode of bonding and the geometry of the complexes have been confirmed on the basis of i.r., u.v.–vis spectral findings and magnetic susceptibility measurements which revealed an octahedral geometry for all the complexes. The nature of the complexes was confirmed by conductometric studies.  相似文献   

12.
A series of new copper(II), cobalt(II), nickel(II), manganese(II), iron(III), and uranyl(VI) complexes of the Schiff base hydrazone 7-chloro-4-(benzylidene-hydrazo)quinoline (HL) were prepared and characterized. The Schiff base behaves as a monobasic bidentate ligand. Mononuclear complexes with the general composition [ML2(Cl)m(H2O)2(OEt)n] x xEtOH (M = Cu(II), Co(II), Ni(II), Mn(II), Fe(III) or UO2(VI); m and n = 0-1; x = 1-3) were obtained in the presence of Li(OH) as a deprotonating agent. The nature of bonding and the stereochemistry of the complexes have been deduced from elemental analyses, infrared, electronic spectra, magnetic susceptibility and conductivity measurements. An octahedral geometry was suggested for all the complexes except the Cu(II) and UO2(VI) ones. The Cu(II) complex has a square-planar geometry distorted towards tetrahedral, while the UO2(VI) complex displays its favored heptacoordination. The Schiff base ligand, HL, and its complexes were tested against one strain gram +ve bacteria (Staphylococcus aureus), gram -ve bacteria (Escherichia coli), and Fungi (Candida albicans). The prepared metal complexes exhibited higher antibacterial activities than the parent ligand and their biopotency is discussed.  相似文献   

13.
Novel zinc(II), copper(II), and cobalt(II) complexes of the Schiff base derived from 2‐hydroxy‐1‐naphthaldehyde and D, L ‐selenomethionine were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, magnetic measurements and powder XRD. The analytical data showed the composition of the metal complex to be ML(H2O), where L is the Schiff base ligand and M = Co(II), Cu(II) and Zn(II). IR results confirmed the tridentate binding of the Schiff base ligand involving azomethine nitrogen, naphthol oxygen and carboxylato oxygen atoms. 1H NMR spectral data of lithium salt of the Schiff base ligand [Li(HL)] and ZnL(H2O) agreed with the proposed structures. The conductivity values of complexes between 12.50 and 15.45 S cm2 mol?1 in DMF suggested the presence of non‐electrolyte species. The powder XRD studies indicated that Co(II) complex is amorphous, whereas Cu(II) and Zn(II) complexes are crystalline. The results of antibacterial and antifungal screening studies indicated that Li(HL) and its metal complexes are active, but CuL(H2O) is most active among them. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
A novel Schiff base ligand (H‐DPPMHQ) derived from 2‐hydrazineylquinoline and 1,3‐diphenyl‐1H‐pyrazole‐5‐carbaldehyde and its dimeric complexes with compositions [Cr(DPPMHQ)Cl]2?2Cl and [M(DPPMHQ)Cl]2 (where M = Cu(II), Co(II), Ni(II) and Zn(II)) have been synthesized and characterized using physicochemical methods like elemental analysis, magnetic susceptibility and molar conductivity measurements, multispectral techniques and electrochemical studies. The molar conductance data reveal that all metal chelates are non‐electrolytes, except the Cr(III) complex which shows a ΛM value of 146.82 Ω?1 cm2 mol?1, indicating that it is a 1:2 electrolyte. Infrared spectral results show that the metal is organized through four nitrogen atoms (azomethine and deprotonated imine groups, pyrazole and quinoline rings) besides chlorine atoms. The NH proton is also displaced during complexation, as indicated by 1H NMR spectral data. Based on the electron spin resonance and ligand field parameter data, the bonding parameters of these complexes have been calculated. Using Coats–Redfern and Horowitz–Metzger equations, thermodynamic parameters were determined. The spectral data indicate that the dimeric complexes have octahedral geometry around the central metal ions. The cytotoxic activities of all compounds were evaluated towards human breast cancer (MCF‐7) and lung cancer (A549) cell lines.  相似文献   

15.
Summary The syntheses of several new coordination complexes of nickel(II), cobalt(II), manganese(II), copper(II), zinc(II), dioxouranium(VI) and dioxomolybdenum(VI) with new Schiff bases derived from 2-benzothiazolecarbohydrazide and salicylaldehyde or 2-hydroxy-1-naphthaldehyde are described. These complexes have been characterised by elemental analyses, electrical conductance, magnetic susceptibility, molecular weight, i.r. and electronic spectra. The Schiff bases behave as dibasic and tridentate ligands coordinating through the ONO donor system and form complexes of the types NiL · 3H2O, MnL · 2H2O, CoL · 2H2O, CuL, ZnL · H2O, UO2L · MeOH and MoO2L · MeOH (where LH2 = Schiff base). The copper(II) complexes exhibit subnormal magnetic moments indicating the presence of an antiferromagnetic exchange interaction, whereas the nickel(II), cobalt(II) and manganese(II) complexes behave normally at room temperature. Zinc(II), dioxouranium(VI) and dioxomolybdenum(VI) complexes are diamagnetic; the zinc (II) complexes are tetrahedral, the copper(II) complexes are square planar, all the other complexes are octahedral. Thev(C=N),v(C-O),v(N-N) andv(C-S) shifts have been measured in order to locate the Schiff base coordination sites.  相似文献   

16.
New Schiff base complexes of Mn(II), Fe(III), Co(II), Ni(II), Cu(II), and Zn(II) were synthesized by template condensation of quinoxaline-2-carboxaldehyde, L-histidine, and the metal compound, and were characterized by elemental analysis, fourier transform infrared spectroscopy, electronic spectra, conductance measurements, magnetic susceptibility measurements, ESR spectra, and thermal analysis. In all the complexes, the Schiff base coordinates through azomethine nitrogen, quinoxaline nitrogen, and carboxylato oxygen. The physicochemical and spectroscopic measurements reveal square planar geometry for the copper(II) complex, tetrahedral geometry for the manganese(II), cobalt(II), and zinc(II) complexes, and octahedral geometry for the iron(III) and nickel(II) complexes.  相似文献   

17.
Two novel Schiff base ligands (La and Lb) were prepared from the condensation of quinoline 2‐aldehyde with 2‐aminopyridine (ligand La) and from the condensation of oxamide with furfural (ligand Lb). Mixed ligand complexes of the type M+2La/b Lc were prepared, where (La and Lb) the primary ligands and Lc was 2,6‐pyridinedicarboxylic acid as secondary ligand. Metal ions used were Fe(II), Co(II), Ni(II) and Zn(II) for mixed ligands La Lc and Fe(II), Co(II), Ni(II), Cu(II), Hg(II) and Zn(II) for LbLc mixed ligands. La and Lb Schiff base ligands were both characterized using elemental analyses, molar conductance, IR, 1H and 13C NMR. Mass spectra for Lb, [Zn(La)LcCl]Cl and [Cu(Lb)LcCl]Cl were also studied. ESR spectrum of the [Cu(Lb) LcCl]Cl complex was also recorded The metal complexes were synthesized and characterized using elemental analyses, spectroscopic (IR, 1H NMR, UV‐visible, diffused reflectance), molar conductance, magnetic moment and thermal studies. The IR and 1H NMR spectral data revealed that 2,6‐pyridinedicarboxalic acid ligand coordinated to the metal ions via pyridyl N and carboxylate O without proton displacement. In addition, the IR data showed that La and Lb ligands behaved as neutral bidentate ligands with N2 donation sites (quinoline N and azomethine N for La and two azomethine N for Lb). Based on spectroscopic studies, an octahedral geometry was proposed for the complexes. The thermal stability and degradation of the metal complexes were investigated by thermogravimetric analysis. The binding modes and affinities of La, Lb and Zn(II) complexes towards receptors of crystal structure of E. coli (PDB ID: 3 t88) and mutant oxidoreductase of breast cancer (PDB ID: 3 hb5) receptors were also studied. The antimicrobial activity against two species of Gram positive, Gram negative bacteria and fungi were tested for the Schiff base ligands, 2,6‐pyridinedicarboxylic acid and the mixed ligand complexes and revealed that the synthesized mixed ligand complexes exhibited higher antimicrobial activity than their free Schiff base ligands.  相似文献   

18.
New cobalt(II), copper(II) and zinc(II) complexes of Schiff base derived from D,L ‐selenomethionine and salicylaldehyde were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, magnetic measurements and biological activity. The analytical data showed that the Schiff base ligand acts as tridentate towards divalent metal ions (cobalt, copper, zinc) via the azomethine‐N, carboxylate oxygen and phenolato oxygen by a stoichiometric reaction of M:L (1:1) to form metal complexes [ML(H2O)], where L is the Schiff base ligand derived from D,L ‐selenomethionine and salicylaldehyde and M = Co(II), Cu(II) and Zn(II). 1H NMR spectral data of the ligand and Zn(II) complex agree with proposed structures. The conductivity values between 12.87 and 15.63 S cm2 mol?1 in DMF imply the presence of non‐electrolyte species. Antibacterial and antifungal results indicate that the metal complexes are more active than the ligand. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
New Schiff base ligand (H2L, 1,2‐bis[(2‐(2‐hydroxyphenylimino)‐methyl)phenoxy]ethane) came from condensation reaction of bisaldehyde and 2‐aminophenol was synthesized in a molar ratio 1:2. Metal complexes and the ligand were completely discussed with spectroscopic and theoretical mechanism. The complexes with Fe(III), Cr(III), Mn(II), Co(II), Cu(II), Ni(II), Th(IV) and Zn(II) have been discussed and characterized by elemental analyses, molar conductance, IR, mass spectroscopy, thermal, magnetic measurements, and 1H NMR. The results proved that the Schiff base was a divalent anion with hexadentate O4N2 donors came from the etheric oxygens (O1, O2), azomethine nitrogens (N1, N2) and deprotonated phenolic oxygens (O3, O4). Density Functional Theory using (B3LYP/6‐31G*) level of theory were implemented to predict molecular geometry, Mulliken atomic energetic and charges of the ligand and complexes. The calculation display that complexes had weak field ligand. The binding energy ranged from 650.5 to 1499.0 kcal/mol for Mn(II) and Th(IV) complexes, respectively. The biological behavior of the Schiff base ligand and its metal complexes were displayed against bacteria and fungi organisms. Fe(III) complex gave remarkable biological activity in comparison with the parent bis Schiff base.  相似文献   

20.
Five new transition metal complexes [MnL(OAc)]·H2O (1), [FeLCl2] (2), [NiL2]·H2O (3), [CuLCl] (4) and [ZnL2]·2H2O (5) have been synthesized using a tridentate Schiff base ligand, HL (quinoxaline-2-carboxalidine-2-amino-5-methylphenol) and the complexes have been characterized by physicochemical and spectroscopic techniques. The spectral analyses reveal an octahedral geometry for 3, square pyramidal structure for 2 and square planar structure for 4. Analytical and physicochemical data indicate tetrahedral structure for 1 and octahedral structure for 5. The crystallographic study reveals that [NiL2]·H2O shows distorted octahedral geometry with a cis arrangement of N4O2 donor set of the bis Schiff base and exhibits a two-dimensional polymeric structure parallel to [0 1 0] plane. The complexes were screened for catalytic phenol hydroxylation reaction. Coordinatively unsaturated manganese(II), iron(III) and copper(II) complexes were found to be active catalysts. The poor catalytic activity of the nickel(II) complex is due to coordinatively saturated octahedral nature of the complex. Maximum conversion of phenol was observed for the copper(II) complex and the major product was catechol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号