首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
As an extension of the Asymmetric Simple Exclusion Process, the floor field cellular automata model has its specific advantages in reproducing crowd self-organized phenomena, embodying individual characteristics and reducing the computing complexity by translating the long-ranged interaction to local interaction. Evacuation from a room is an important part in the study of building evacuation. In our experiment and real life observation we found the exit attraction non-uniformity. To obtain the effect of individual tendency to the exit attraction center on the crowd evacuation efficiency, the static field is modified. Compared with the control group, the exit attraction non-uniformity has a disadvantage in the crowd evacuation efficiency. The position deviation between the exit geometric center and the exit attraction center delays the crowd evacuation by generating a local merging flow. In addition, the individual tendency also increases the crowd evacuation time by increasing the static field gradient to the attraction center, leading to a low usage efficiency of exits. Compared with the influence of other factors, the inhomogeneous exit attraction has an obvious effect on the crowd evacuation efficiency.  相似文献   

2.
Guan-Ning Wang 《中国物理 B》2022,31(6):60402-060402
The study of the panic evacuation process is of great significance to emergency management. Panic not only causes negative emotions such as irritability and anxiety, but also affects the pedestrians decision-making process, thereby inducing the abnormal crowd behavior. Prompted by the epidemiological SIR model, an extended floor field cellular automaton model was proposed to investigate the pedestrian dynamics under the threat of hazard resulting from the panic contagion. In the model, the conception of panic transmission status (PTS) was put forward to describe pedestrians' behavior who could transmit panic emotions to others. The model also indicated the pedestrian movement was governed by the static and hazard threat floor field. Then rules that panic could influence decision-making process were set up based on the floor field theory. The simulation results show that the stronger the pedestrian panic, the more sensitive pedestrians are to hazards, and the less able to rationally find safe exits. However, when the crowd density is high, the panic contagion has a less impact on the evacuation process of pedestrians. It is also found that when the hazard position is closer to the exit, the panic will propagate for a longer time and have a greater impact on the evacuation. The results also suggest that as the extent of pedestrian's familiarity with the environment increases, pedestrians spend less time to escape from the room and are less sensitive to the hazard. In addition, it is essential to point out that, compared with the impact of panic contagion, the pedestrian's familiarity with environment has a more significant influence on the evacuation.  相似文献   

3.
4.
董力耘  陈立  段晓茵 《物理学报》2015,64(22):220505-220505
基于教室人群疏散实验, 从中归纳出疏散过程中行人的基本运动特征. 将桌椅分别视为不可穿越和可穿越的静态障碍物, 而行人则被当成可移动的障碍物, 这将导致背景场随人群的运动而动态更新, 因此可以更好地反映前方拥挤程度对后面人群路径选择行为的影响. 采用基于动态背景场的元胞自动机模型研究了不同桌椅排列和出口宽度的教室人群疏散过程, 给出了疏散时间的空间分布以及平均和最大疏散时间, 再现了实验中人群疏散的基本特征. 数值模拟结果表明, 疏散时间取决于桌椅的排列方式和教室出口的宽度. 对于同一种排列, 出口越小则疏散时间越长; 对于给定的出口宽度, 通常随着过道数的增加, 疏散时间随之减少; 当过道数增加且过道宽度不足以两人并行, 从两侧进入过道的行人会发生冲突, 使疏散效率有所降低; 靠近出口一侧墙壁设置过道有利于人群的疏散. 文中进一步分析了模拟与实验结果存在差异的原因.  相似文献   

5.
The evacuation process of students from a dormitory is investigated by both experiment and modeling. We investigate the video record of pedestrian movement in a dormitory, and find some typical characteristics of evacuation, including continuous pedestrian flow, mass behavior and so on. Based on the experimental observation, we found that simulation results considering pre-movement time are closer to the experimental results. With the model considering pre-movement time, we simulate the evacuation process and compare the simulation results with the experimental results, and find that they agree with each other closely. The crowd massing phenomenon is conducted in this paper. It is found that different crowd massing phenomena will emerge due to different desired velocities. The crowd massing phenomenon could be more serious with the increase of the desired velocity. In this study, we also found the faster-is-slower effect. When the positive effect produced by increasing the desired velocity is not sufficient for making up for its negative effect, the phenomenon of the greater the desired velocity the longer the time required for evacuation will emerge. From the video record, it can be observed that the mass behavior is obvious during the evacuation process. And the mass phenomenon could also be found in simulation. The results obtained from our study are also suitable to all these buildings in which both living and resting areas occupy the majority space, such as dormitories, residential buildings, hotels (restaurants) and so on.  相似文献   

6.
Yang-Hui Hu 《中国物理 B》2023,32(1):18901-018901
Building exit as a bottleneck structure is the last and the most congested stage in building evacuation. It is well known that obstacles at the exit affect the evacuation process, but few researchers pay attention to the effect of stationary pedestrians (the elderly with slow speed, the injured, and the static evacuation guide) as obstacles at the exit on the evacuation process. This paper explores the influence of the presence of a stationary pedestrian as an obstacle at the exit on the evacuation from experiments and simulations. We use a software, Pathfinder, based on the agent-based model to study the effect of ratios of exit width ($D$) to distance ($d$) between the static pedestrian and the exit, the asymmetric structure by shifting the static pedestrian upward, and types of obstacles on evacuation. Results show that the evacuation time of scenes with a static pedestrian is longer than that of scenes with an obstacle due to the unexpected hindering effect of the static pedestrian. Different ratios of $D/d$ have different effects on evacuation efficiency. Among the five $D/d$ ratios in this paper, the evacuation efficiency is the largest when $d$ is equal to $0.75D$, and the existence of the static pedestrian has a positive impact on evacuation in this condition. The influence of the asymmetric structure of the static pedestrian on evacuation efficiency is affected by $D/d$. This study can provide a theoretical basis for crowd management and evacuation plan near the exit of complex buildings and facilities.  相似文献   

7.
Daoliang Zhao  Lizhong Yang 《Physica A》2008,387(14):3708-3718
Occupant behavior which is very complex affects evacuation efficiency and route choice a lot. The psychology and behavior of going with the crowd is very common in daily life and also in occupant evacuation. In this paper, a two-dimensional Cellular Automata model is applied to simulate the process of evacuation considering the psychology of going with the crowd with different room structure or occupant density. The psychology of going with the crowd (the abbreviation is GWC) is classified into directional GWC (DGWC) and spatial GWC (SGWC). The influence of two such kinds of psychology on occupant evacuation is discussed in order to provide some useful guidance on the emergency management of evacuation.  相似文献   

8.
In most situations, staircase is the only egress to evacuate from high-rise buildings. The merging flow on the stair landing has a great influence on the evacuation efficiency. In this paper, we develop an improved cellular automaton model to describe the merging behavior, and the model is validated by a series of real experiments. It is found that the flow rate of simulation results is similar to the drills, which means that the improved model is reasonable and can be used to describe the merging behavior on stairs. Furthermore, some scenarios with different door locations and building floor numbers are simulated by the model. The results show that(i) the best door location is next to the upward staircase;(ii) the total evacuation time and the building floor number are linearly related to each other;(iii) the pedestrians on upper floors have a negative influence on the evacuation flow rate.  相似文献   

9.
Panic during emergency building evacuation can cause crowd stampede, resulting in serious injuries and casualties. Agent-based methods have been successfully employed to investigate the collective human behavior during emergency evacuation in cases where the configurational space is extremely simple–usually one rectangular room–but not in evacuations of multi-room or multi-floor buildings. This implies that the effect of the complexity of building architecture on the collective behavior of the agents during evacuation has not been fully investigated. Here, we employ a system of self-moving particles whose motion is governed by the social-force model to investigate the effect of complex building architecture on the uncoordinated crowd motion during urgent evacuation. In particular, we study how the room door size, the size of the main exit, the desired speed and the friction coefficient affect the evacuation time and under what circumstances the evacuation efficiency improves.  相似文献   

10.
Xiaoping Zheng  Yuan Cheng 《Physica A》2011,390(6):1042-1050
The game-theoretic approach is an essential tool in the research of conflicts of human behaviors. The aim of this study is to research crowd dynamic conflicts during evacuation processes. By combining a conflict game with a Cellular Automata model, the following factors such as rationality, herding effect and conflict cost are taken into the research on frequency of each strategy of evacuees, and evacuation time. Results from Monte Carlo simulations show that (i) in an emergency condition, rationality leads to “vying” behaviors and inhibited “polite” behavior; (ii) high herding causes a crowd of high rationality (especially in normal circumstances) to become more “vying” in behavior; (iii) the high-rationality crowd is shown to spend more evacuation time than a low-rationality crowd in emergency situations. This study provides a new perspective to understand conflicts in evacuation processes as well as the rationality of evacuees.  相似文献   

11.
Merging behaviour is a compulsive action in a discretionary lane-changing traffic system, especially in a system with a bottleneck. This paper aims to investigate the generic lane-changing behaviour considering the merging effect before a city road bottleneck. Thus firstly the merging behaviour is distinguished from other generic lane-changing behaviour. Combining discretionary lane-changing and compulsive merging, we developed an integrative traffic model, in which a method to calculate the lane-changing probability and the merging probability was proposed. A simulation scenario derived from real life was conducted to validate the proposed programming algorithm. Finally, a discussion on the simulation findings shows that the merging influence can be expanded and the merging behaviour can increase the probability of local traffic jamming in its affected area of the adjacent lane. The distribution of the merging distance provides fundamental insights for actual traffic management. The result of the clearance time implies the position of the incident point has a significant effect on the clearing time and it is important to ensure the end (exit) of the road is unimpeded in traffic evacuation.  相似文献   

12.
The evacuation of crowds in a building has always emerged as a vital issue in many accidents. The geometrical structure of a room, especially the exit design has a great influence on crowd evacuation under emergency conditions. In this paper, the effect of exit location of a room on crowd evacuation in an emergency is investigated with mice. Two different exits are set in a rectangular chamber. One is located in the middle of a wall(middle-exit) and the other is at the corner of the chamber(corner-exit). Arching and clogging are observed in the flow of mice. The result based on the escape trajectories of mice shows a dynamic balance in the arch near the exit wherever the exit is located. We demonstrate that the occupant position in the arch has an effect on the escape sequence of mice. At a low stimulation level, the narrow middle-exit is more effective in increasing the flow rate of mice than the narrow corner-exit. However, the opposite result appears when the exit becomes wider. At a high stimulation level, the effect of exit location on flow of mice tends to be weakened. The results suggest that the specific level of stimulation needs to be taken into account when optimizing the evacuation efficiency of a crowd through the geometrical structure of a room.  相似文献   

13.
Spatial memory is a critical navigation support tool for disoriented evacuees during evacuation under adverse environmental conditions such as dark or smoky conditions. Owing to the complexity of memory, it is challenging to understand the effect of spatial memory on pedestrian evacuation quantitatively. In this study, we propose a simple method to quantitatively represent the evacuee's spatial memory about the emergency exit, model the evacuation of pedestrians under the guidance of the spatial memory, and investigate the effect of the evacuee's spatial memory on the evacuation from theoretical and physical perspectives. The result shows that(i) a good memory can significantly assist the evacuation of pedestrians under poor visibility conditions, and the evacuation can always succeed when the degree of the memory exceeds a threshold(? 0.5);(ii) the effect of memory is superior to that of "follow-the-crowd" under the same environmental conditions;(iii)in the case of multiple exits, the difference in the degree of the memory between evacuees has a significant effect(the greater the difference, the faster the evacuation) for the evacuation under poor visibility conditions. Our study provides a new quantitative insight into the effect of spatial memory on crowd evacuation under poor visibility conditions.  相似文献   

14.
Crowd simulation is rapidly becoming a standard tool for evacuation planning and evaluation. However, the many crowd models in the literature are structurally different, and few have been rigorously calibrated against real-world egress data, especially in emergency situations. In this paper we describe a procedure to quantitatively compare different crowd models or between models and real-world data. We simulated three models: (1) the lattice gas model, (2) the social force model, and (3) the RVO2 model, and obtained the distributions of six observables: (1) evacuation time, (2) zoned evacuation time, (3) passage density, (4) total distance traveled, (5) inconvenience, and (6) flow rate. We then used the DISTATIS procedure to compute the compromise matrix of statistical distances between the three models. Projecting the three models onto the first two principal components of the compromise matrix, we find the lattice gas and RVO2 models are similar in terms of the evacuation time, passage density, and flow rates, whereas the social force and RVO2 models are similar in terms of the total distance traveled. Most importantly, we find that the zoned evacuation times of the three models to be very different from each other. Thus we propose to use this variable, if it can be measured, as the key test between different models, and also between models and the real world. Finally, we compared the model flow rates against the flow rate of an emergency evacuation during the May 2008 Sichuan earthquake, and found the social force model agrees best with this real data.  相似文献   

15.
The present research presents an extended evacuation field model for simulating crowd emergency evacuation processes under the control of evacuation assistants. Furthermore, a communication field for describing the escape information transmission process and its effect on evacuees is introduced. The effective locations and optimal numbers of evacuation assistants as generated through the model are proposed in an effort to verify as well as enhance existing models. Results show the following. (1) Locating evacuation assistants near exits reduces the time delay for pre-evacuation. (2) There is an optimal number of evacuation assistants for achieving evacuation efficiency; having excessive numbers of evacuation assistants does not improve the evacuation efficiency, and they may result in evacuation time delay and hinder the evacuation efficiency. (3) As the number of evacuees increases, the number of evacuation assistants needed decreases.  相似文献   

16.
Crowd scenarios have attracted attention from computer modellers, perhaps because of the impracticality of studying the phenomenon by traditional experimental methods. For example, Kirchner has proposed an agent-based crowd model inspired by fields of elementary particles [A. Kirchner, A. Schadschneider, Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics, Physica A 312 (2002) 260–276.], but chose not to incorporate crowd forces. We argue that crowd forces (and associated injuries) are an essential characteristic of crowds, and that their omission will negatively affect the model's ability to make predictions (e.g. time for a crowd to pass through an exit). To support this position we describe an evolution of Kirchner's model that includes a vector-based particle field to represent forces. We show qualitative and quantitative differences compared to Kirchner's model when force is included. The Swarm Force model demonstrates—by showing non-linear effects of force—the necessity of force in crowd models.  相似文献   

17.
In China, both the mountainous areas and the number of people who live in mountain areas occupy a significant proportion. When production accidents or natural disasters happen, the residents in mountain areas should be evacuated and the evacuation is of obvious importance to public safety. But it is a pity that there are few studies on safety evacuation in rough terrain. The particularity of the complex terrain in mountain areas, however, makes it difficult to study pedestrian evacuation. In this paper, a three-dimensional surface cellular automata model is proposed to numerically simulate the real time dynamic evacuation of residents. The model takes into account topographic characteristics (the slope gradient) of the environment and the biomechanics characteristics (weight and leg extensor power) of the residents to calculate the walking speed. This paper only focuses on the influence of topography and the physiological parameters are defined as constants according to a statistical report. Velocity varies with the topography. In order to simulate the behavior of a crowd with varying movement velocities, and a numerical algorithm is used to determine the time step of iteration. By doing so, a numerical simulation can be conducted in a 3D surface CA model. Moreover, considering residents evacuation around a gas well in a mountain area as a case, a visualization system for a three-dimensional simulation of pedestrian evacuation is developed. In the simulation process, population behaviors of congestion, queuing and collision avoidance can be observed. The simulation results are explained reasonably. Therefore, the model presented in this paper can realize a 3D dynamic simulation of pedestrian evacuation vividly in complex terrain and predict the evacuation procedure and evacuation time required, which can supply some valuable information for emergency management.  相似文献   

18.
Weifeng Yuan  Kang Hai Tan 《Physica A》2011,390(23-24):4210-4218
The modelling of crowd evacuation from a building has been studied over the past decades. In this study, a numerical model based on cellular automaton is proposed to simulate the human behaviour termed “flow with the stream” in emergency evacuation from a large smoke-filled compartment. In the model, the smoke effect in the context of visibility is considered since visibility range can affect the human behaviour significantly. To simulate the reality that the smoke concentration in a fire compartment is not constant, the proposed model is developed to deal with the scenario in which the visibility range varies in the course of time. An empirical formula is incorporated into the proposed model to estimate the visibility range. The results of numerical tests show that the proposed model can also be used to investigate the effect of the number of guiders through case study.  相似文献   

19.
杨晓霞  董海荣  姚秀明  孙绪彬 《中国物理 B》2016,25(4):48902-048902
With the development of urban rail transit, ensuring the safe evacuation of pedestrians at subway stations has become an important issue in the case of an emergency such as a fire. This paper chooses the platform of line 4 at the Beijing Xuanwumen subway station to study the emergency evacuation process under fire. Based on the established platform, effects of the fire dynamics, different initial pedestrian densities, and positions of fire on evacuation are investigated. According to simulation results, it is found that the fire increases the air temperature and the smoke density, and decreases pedestrians' visibility and walking velocity. Also, there is a critical initial density at the platform if achieving a safe evacuation within the required 6 minutes. Furthermore, different positions of fire set in this paper have little difference on crowd evacuation if the fire is not large enough. The suggestions provided in this paper are helpful for the subway operators to prevent major casualties.  相似文献   

20.
An alternative floor field (FF) model is proposed by incorporating the agitated behavior and elastic characteristics of pedestrians. The agitated behavior which is regarded as an important factor to pedestrian dynamics is depicted by introducing a parameter to revise the transition probability of pedestrians to move to the neighboring cells. To characterize elasticity of pedestrians, it is assumed that a cell can hold more than one pedestrians in crowd condition, while it can hold only one pedestrian in normal condition. In addition, a method to deal with conflicts is employed by considering the effects of agitated behavior and desired velocity. Numerical simulations are carried out to investigate pedestrian evacuation from a room. The results show, that as the value of agitated parameter increases, the evacuation time decreases to the minimum value and then increases gradually. Also, the faster-is-slower effect which is obtained by some other simulation models can be reproduced by the proposed model. Finally, the influence of exit width and the corresponding mechanism on evacuation process is investigated which is expected to be helpful to the exit design of public rooms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号