首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulse radiolysis studies were performed for aqueous solutions of ammonium perfluorooctanoate, tetraethylammonium perfluorooctyl sulfonate, and an ammonium salt of a carboxylic perfluoropolyether derivative. The protiated system of sodium octanoate was also examined for comparison. The rate constants of hydrated electron (e aq) and ·OH radical reactions with these amphiphiles, and absorption spectra of the intermediate products are reported for the first time. It is demonstrated that the critical micellar concentrations (CMC) can be determined from the kinetic data. The observed differences in e aq reactivity towards fluorinated amphiphiles above CMC are rationalized in terms of different charge density at the micellar interface.  相似文献   

2.
Thioacetamide (TA) is an organic compound having thioamide group similar to that in thiourea derivatives. Its reactions with eaq, H-atom and OH radicals were studied using the pulse radiolysis technique at various pHs and the kinetic and spectral characteristics of the transient species were determined. The initial adduct formed by the reaction of TA with OH radicals at pH 7 does not absorb light in the 300–600 nm region but reacts with the parent compound to give a transient species with an absorption maximum around 400 nm. At pH 0, the reaction of OH radicals with TA directly gives a similar transient species with absorption maximum at 400 nm. Transient species formed by H-atom reaction with TA and pH 0 has no absorption in the 300–600 nm region but at higher acidity a new transient species is formed which has absorption maximum at 400 nm. This transient absorption observed in the case of both OH and H atom reaction with TA is ascribed to the formation of a resonance stabilized radical similar to that obtained in the case of thiourea derivatives. The species produced by electron reaction viz. electron adduct was found to be a strong reductant and could reduce MV2+ with a high rate constant. H2S was produced as a stable product in the reaction of eaq and its G-value was determined to be about 0.8.  相似文献   

3.
Reactions of 2- and 3-nitro anilines (2- and 3-NA) with eaq, H-atoms and one-electron reductants have been studied using pulse radiolysis in aqueous solutions. Reactions of eaq were found to be quite fast with both 2-NA and 3-NA resulting in their corresponding semi-reduced species which are reducing in nature. Reduction potentials for 2-NA/2-Na•′ have been estimated to be approx. −0.56 Vvs. NHE and that for 3-NA/3-NA•− was found to be between −0.185 V and −0.45 Vvs. NHE. Semi-reduced 2-NA has main absorption peak at 300 nm with a shoulder in the 350 nm region and a broad weak band in the 470–500 nm region, whereas semi-reduced 3-NA possesses an absorption peak at 520 nm. Reducing radicals such as (CH3)2 COH and CO2•− reacted with 2-NA, producing semi-reduced species, whereas reactions of these radicals with 3-NA produced their corresponding radical-adduct species.  相似文献   

4.
The reactions of e aq, H-atoms, OH radicals and some one electron oxidants and reductants were studied with dithio-oxamide (DTO) in aqueous solutions using pulse radiolysis technique. The transient species formed by the reaction of e aq with DTO at pH 6.8 has an absorption band with λ max at 380 nm and is reducing in nature. H-atom reaction with DTO at pH 6.8 also produced the same transient species. The semi-reduced species was found to be neutral indicating that the electron adduct gets protonated quickly. However at pH 1, the species produced by H-atom reaction had a different spectrum with λ max at 360 and 520 nm. Reaction of acetone ketyl radicals and CO2 radicals with DTO at pH 6.8 gave transient spectra which were identical to that obtained by e aq reaction. However at pH 1, the spectrum obtained by the reaction of acetone ketyl radicals with DTO was similar to that obtained by H-atom reaction at that pH. The transient species formed by OH radical reaction with DTO in the pH range 1–9.2 also has two absorption maxima at 360 and 520 nm. This spectrum was identical with the spectrum obtained by H-atom reaction at pH 1. This means that all these radicals viz. OH, H-atom and (CH3)2COH radicals react with DTO at pH 1 by H-abstraction mechanism. The transient species produced was found to be sensitive to the presence of oxygen. One-electron oxidizing radicals such as Br2 −· and SO4 −· radicals reacted with DTO at neutral pH to give the same species as produced by OH radical reaction having absorption maxima at 360 to 520 nm. At acidic pHs, only Br2 −· and Cl2 −· radicals were able to oxidize DTO to give the same species as produced by OH radical reaction. The semioxidized species is a resonance stabilized species with the electron delocalized over the-N-C-S bond. This species was found to be neutral and non-oxidizing in nature.  相似文献   

5.
The hydrated electron (eaq) and hydroxyl radical rate constants with 18 acrylate-, methacrylate-, crotonate-, fumarate- and maleate esters are discussed. The constants approach the diffusion-controlled limit. k(eaq) and k(OH) change in opposite direction; if k(eaq) is high then k(OH) is small. This tendency is connected with the nucleophilic character of eaq and the electrophilic character of OH, although the site of attack of eaq and OH is different: carbonyl versus vinyl group.  相似文献   

6.
Pulse radiolysis technique has been used to characterise the transients formed by the reaction of sulphacetamide with eaq - and subsequently study the electron transfer reactions from the transient to various electron acceptors such as thionine, safranine-T and methyl viologen. The results indicate that the semi-reduced sulphacetamide species are highly reducing in nature as they transfer electrons to various dyes with near diffusion controlled rates (k > 109dm3mol−1s−1) in alkaline and acidic solutions. The influence of oxygen on the decay behaviour of semi-reduced species has been investigated and the results show that O2 reaction with SA is very fast (k = 1.5 × l09dm3mol−1s−1) and leads to the formation of a permanent-coloured product. Reactions of H.atoms resulted in the formation of two transient species whose spectral, kinetic and acid-base characteristics have also been investigated.  相似文献   

7.
Rate constants for the reactions of e aq ? , H and OH radicals with 2-pyridine carboxaldehyde and 2-pyridine methanol have been determined by pulse radiolysis technique. Reactions of reducing radicals such as acetone ketyl radicals and CO2 ? with these compounds were also evaluated at various pHs. The species produced by the reaction of reducing radicals with these solutes was a strong reductant itself. While pyridinyl were produced in the case of 2-pyridine methanol, one-electron reduction of 2-pyridine carboxaldehyde led to the formation of PyCHOH radical. The one-electron reduction potential of PyCHOH radicals was estimated by establishing an equilibrium with MV+ radical cations to be ?0.6V vs NHE. OH radical reaction with 2-pyridine carboxaldehyde gave an OH adduct, while in the case of 2-pyridine methanol, OH radicals reacted partly by H-abstraction from the ?CH2OH group. SO4 ? radical reaction with 2-pyridine carboxaldehyde produced a species which was reducing in nature. The rate constants for the reaction of e aq ? and OH radicals are compared with similar values obtained in the case of other 2-pyridine derivatives to see if there is any electron-inductive effect.  相似文献   

8.
Reactions of eaq, OH radicals and H atoms were studied with n-allylthiourea (NATU) using pulse radiolysis. Hydrated electrons reacted with NATU (k = 2.8×109 dm3 mol−1 s−1) giving a transient species which did not have any significant absorption above 300 nm. It was found to transfer electrons to methyl viologen. At pH 6.8, the reduction potential of NATU has been determined to be −0.527 V versus NHE. At pH 6.8, OH radicals were found to react with NATU, giving a transient species having absorption maxima at 400–410 nm and continuously increasing absorption below 290 nm. Absorption at 400–410 nm was found to increase with parent concentration, from which the equilibrium constant for dimer radical cation formation has been estimated to be 4.9×103 dm3 mol−1. H atoms were found to react with NATU with a rate constant of 5 × 109 dm3 mol−1 s−1, giving a transient species having an absorption maximum at 310 nm, which has been assigned to H-atom addition to the double bond in the allyl group. Acetoneketyl radicals reacted with NATU at acidic pH values and the species formed underwent reaction with parent NATU molecule. Reaction of Cl.−2 radicals (k = 4.6 × 109 dm3 mol−1 s−1) at pH 1 was found to give a transient species with λmax at 400 nm. At the same pH, reaction of OH radicals also gave transient species, having a similar spectrum, but the yield was lower. This showed that OH radicals react with NATU by two mechanisms, viz., one-electron oxidation, as well as addition to the allylic double bond. From the absorbance values at 410 nm, it has been estimated that around 38% of the OH radicals abstract H atoms and the remaining 62% of the OH radicals add to the allylic double bond.  相似文献   

9.
Redox reactions of pyridoxal (P-OH) with e¯aq, . OH, N . 3, SO . 4¯ and various organo-haloperoxyl radicals have been studied using pulse radiolysis technique. The rate constants for the reaction of P-OH or P-O¯ with the above-mentioned radicals and the transient absorption spectra have been measured. The transients formed in the reaction of hydrated electron and oxidizing radicals with pyridoxal have been assigned. An attempt has been made to find a correlation between the rate constants and Taft parameter for the reactions with the organo-haloperoxyl radicals. It has also been observed that the one-electron oxidized radical of pyridoxal is repaired by uric acid. The reduction potential for the P-OH .+/P-OH couple at pH 7, as measured by cyclic voltammetry, has been found to be +1.11 V vs. NHE.  相似文献   

10.
Damages induced by free radicals on human serum albumin (HSA), the most prominent protein in plasma, were investigated by Raman spectroscopy. HSA underwent oxidative and reductive radical stress. Gamma-irradiation was used to simulate the endogenous formation of reactive radical species such as hydrogen atoms (H), solvated electrons (eaq) and hydroxyl radicals (OH). Raman spectroscopy was shown to be a useful tool in identifying conformational changes of the protein structure and specific damages occurring at sensitive amino acid sites. In particular, the analysis of the S–S stretching region suggested the radical species caused modifications in the 17 disulphide bridges of HSA. The concomitant action of eaq and H atoms caused the formation of cyclic disulphide bridges, showing how cystine pairs act as efficient interceptors of reducing species, by direct scavenging and electron transfer reactions within the protein. This conclusion was further confirmed by the modifications visible in the Raman bands due to Phe and Tyr residues. As regards to protein folding, both oxidative and reductive radical stresses were able to cause a loss in α-helix content, although the latter remains the most abundant secondary structure component. β-turns motifs significantly increased as a consequence of the synergic action of eaq and H atoms, whereas a larger increase in the β-sheet content was found following the exposure to OH and/or H attack.  相似文献   

11.
Pulsed radiolysis and computer simulation of gamma radiolytic decomposition of organic nitrates in aqueous solutions were performed to determine the rate constants for reactions with the participation of intermediates determining the mechanism of the process. 2,4,6-Trinitrotoluene, 2,4-dinitrotoluene, and cyclic nitramine, cyclotrimethylene-trinitramine, were used as substrates. The bimolecular rate constants for the reactions of hydrated electrons (e aq ? ) and hydroxyl radicals (?OH) with the substrates and constants for the recombination of electron adducts and carbon-centered radicals (the products of the detachment of the H atom from the nitro compound molecule by the OH radical) were determined by direct measurements with the use of high-speed spectrophotometry. Computer simulation of the reaction scheme was used to estimate the rate constant for significant reactions, monomolecular forward and back reactions of electron adducts and electron transfer to molecular oxygen, and refine the rate constant for the reaction of e aq ? with tert-butanol.  相似文献   

12.
Initiation and individual propagation rate constants for the first few steps are determined for e-aq, OH radical and H atom reactions with cyclohexyl methacrylate as the monomer using the technique of pulse radiolysis. Though the rate constants for initiation are higher, the propagation rate constants for the transient species formed by reaction of OH radical and H atom are lower compared to that by reaction of e-aq with the monomer. It is also observed that in the case of e-aq reaction the first propagation step is about an order of magnitude faster than the second propagation step and propagation through radical-anionic form is much faster than its radical counterpart.  相似文献   

13.
The effect of pH and associated ionic strength on the primary yields in the radiolysis of pressurised water has been assessed by diffusion-kinetic calculations for temperatures in the range 100–300°C. Account has been taken for ionic strength I up to 0.1 mol kg−1, assuming that the counter ions of H+ in acid solutions and of OH in base solutions have unit charge. In acid solutions, the H+ ions react with e aq. The decrease in G(e aq) and the increase in G(H) with decreasing pH becomes substantial for [H+] ≥ 1 × 10−4 m, but the primary yields of oxidising species are almost constant. In alkaline solutions, the OH anions affect the spur chemistry of radiation-generated protons and hydroxyl radicals for [OH] ≥ 1 × 10−4 m. The scavenging of H atoms and hydrogen peroxide becomes significant for [OH] ≥ 1 × 10−2 m. The total yields G(OH) + G(O) and G(H2O2) + G(HO2 ) are independent of base concentration below 0.01 m. In more alkaline solutions, G(OH) + G(O) increases, whereas G(H2O2) + G(HO2 ) decreases with increasing [OH]. Calculations showed the substantial yield of the reaction O + e aq in 0.1 m base solution. Spur chemistry in alkaline hydrogenated water is not affected by the presence of H2 if less than 0.001 m of hydrogen is added.  相似文献   

14.
A kinetic analysis of the electrochemical impedance spectra for nickel electrodissolution in an acid medium based on the characteristic points of the faradaic impedance function has been performed when chloride ions are present in the acid medium. Moreover, the obtained results are compared with the event when chloride ions are not present in the acid medium. Chloride ions cause a decrease in both Γ1 and Γ2 surface concentration assuming a two consecutive electron transfer mechanisms, Ni(0) → Ni(I) + e → Ni(II) + e, followed by a dissolution process, Ni(II) → Ni2+ aq. An increase of the pH favors the formation of a Ni(OH)2 passive layer that impedes to distinguish clearly between both electron transfers from electrochemical impedance results.  相似文献   

15.
The specific ion interaction theory (SIT) was applied to the first hydrolysis constants of Eu(III) and solubility product of Eu(OH)3 in aqueous 2, 3 and 4 mol⋅dm−3 NaClO4 at 303.0 K, under CO2-free conditions. Diagrams of pEuaq versus pCH were constructed from solubilities obtained by a radiometric method, the solubility product log10 Ksp, Eu(OH)3I {Eu(OH)3(s) Euaq3++ 3OHaq } values were calculated from these diagrams and the results obtained are log10 Ksp,Eu(OH)3I = − 22.65 ± 0.29, −23.32 ± 0.33 and −23.70 ± 0.35 for ionic strengths of 2, 3 and 4 mol⋅dm−3 NaClO4, respectively. First hydrolysis constants {Euaq3++H2O Eu(OH)(aq)2++H+ } were also determined in these media by pH titration and the values found are log10βEu,HI = − 8.19 ± 0.15, −7.90 ± 0.7 and −7.61 ± 0.01 for ionic strengths of 2, 3, and 4 mol⋅dm−3 NaClO4, respectively. Total solubilities were estimated taking into account the formation of both Eu3+ and Eu(OH)2+ (7.7 < pCH < 9) and the values found are: 1.4 × 10−6 mol⋅dm−3, 1.2 × 10−6 mol⋅dm−3 and 1.3 × 10−6 mol⋅dm−3, for ionic strengths of 2, 3 and 4 mol⋅dm−3 NaClO4, respectively. The limiting values at zero ionic strength were extrapolated by means of the SIT from the experimental results of the present research together with some other published values. The results obtained are log10 Ksp, Eu(OH)3o = − 23.94 ± 0.51 (1.96 SD) and log10βEu,H0 = − 7.49 ± 0.15 (1.96 SD).  相似文献   

16.
The decay kinetics of hydrated electron (eaq ) formed upon photolysis of aqueous solutions of sodium pyrene-1,3,6,8-tetrasulfonate at λ = 337 nm in the presence of phosphate anions (up to 2 mol L−1) was studied by nanosecond laser-pulse photolysis in a wide range of pH (3.5–10) and ionic strength (I, up to 2 mol L−1) values. At high pH values, where the HPO4 2− ions dominate, the eaq decay kinetics depends only slightly on phosphate concentration (rate constant for the reaction is at most 2·105 L mol−1 s−1). The H2PO4 ions react with eaq at a rate constant of 2.8·106 L mol−1 s−1 (I = 0), which increases linearly with the parameter in accordance with the Debye-Hückel theory. The rate constant for quenching of eaq by H3PO4 at pH ≤ 4 decreases linearly with the parameter due to the secondary salt effect and equals 1.6·109 L mol−1 s−1 at I = 0. The logarithm of the rate constant for quenching of eaq by phosphates is linearly related to the number of the O-H bonds in the phosphate molecule. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1277–1280, July, 2007.  相似文献   

17.
The ultraviolet-visible absorption spectrum of C60(OH)18 in water showed an absorption band with λmax = 215 nm and other characteristic absorption bands of C60 are not observed. The singlet-singlet and triplet-triplet absorption bands are not observed in the 400–900 nm region. It has low reactivity with eaq and formed an absorption band with λmax = 580 nm. The hydroxyl radicals react with a bimolecular rate constant of 2.4×109 dm3 mol−1 s−1 and showed an absorption band at 540 nm.  相似文献   

18.
The equilibria and kinetics of the reaction of FeIII with salicylaldehyde ando-hydroxyacetophenone, leading to 1∶1 chelate formation, have been studied at different temperatures (25–35°C) and ionic strength, I = 1.0 mol dm−3 (NaClO4+HClO4). A dual path mechanism involving both Fe aq 3+ and Fe(OH) aq 2+ species and undissociated free ligand (LH) is consistent with the experimental observations where [H+]≫[Fe]T≫[L]T (where [Fe]T and [L]T stand for total concentrations of iron and ligand respectively). The results conform to kobs/B = k1[H+]+k2Kh where B = [Fe]T/(Kh+[H+])+1/Q; Kh = hydrolysis constant of Fe aq 3+ ; k1, k2 are the forward second order rate constants of Fe aq 3+ and Fe(OH) aq 2+ , respectively, and Q is the equilibrium constant of the reaction, Fe3++LH⇋FeL2++H+. Thermodynamic parameters for each of the steps have been determined. Fe(OH) aq 2+ appears to react in a dissociative fashion (Eigen-Tamm mechanism), whilst Fe aq 3+ appears to react through the associative inter-change (Ia) mechanism. The equilibrium constants (Q) obtained spectrophotometrically are compared with those obtained from kinetic studies. TMC 2638  相似文献   

19.
The reactions of primary species of water radiolysis such as e- aq, H* and *OH, and some specific one electron reductants and oxidants with 2-mercaptobenzimidazole have been studied at various pHs. *OH radical reaction with MBZ at pH 7 gave a transient species having absorption maxima (λmax) at 330 and 590 nm. The transient species (pKa = 3.6) was found to be neutral at this pH and was a mild oxidant. The initial transient species formed by the reaction of MBZ with e- aq at pH 7 and with H atom at pH 0 were found to react with the parent molecule to form another transient species which has an absorption spectrum similar to that obtained by *OH radical reaction with λmax at 590 nm. However the reaction is not quantitative. The kinetic, spectral, acid-base and redox properties of the transient species are reported.  相似文献   

20.
Solubility product (Lu(OH)3(s)⇆Lu3++3OH) and first hydrolysis (Lu3++H2O⇆Lu(OH)2++H+) constants were determined for an initial lutetium concentration range from 3.72·10−5 mol·dm−3 to 2.09·10−3 mol·dm−3. Measurements were made in 2 mol·dm−3 NaClO4 ionic strength, under CO2-free conditions and temperature was controlled at 303 K. Solubility diagrams (pLuaq vs. pC H) were determined by means of a radiochemical method using 177Lu. The pC H for the beginning of precipitation and solubility product constant were determined from these diagrams and both the first hydrolysis and solubility product constants were calculated by fitting the diagrams to the solubility equation. The pC H values of precipitation increases inversely to [Lu3+]initial and the values for the first hydrolysis and solubility product constants were log10 β* Lu,H = −7.92±0.07 and log10 K*sp,Lu(OH)3 = −23.37±0.14. Individual solubility values for pC H range between the beginning of precipitation and 8.5 were S Lu3+ = 3.5·10−7 mol·dm−3, S Lu(OH)2+ = 6.2·10−7 mol·dm−3, and then total solubility was 9.7·10−7 mol·dm−3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号