首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Adsorption of carbon monoxide in the presence of adlayers formed upon exposure of Pt/Pt to I anions and I2 (0.5 M 2SO4 as the supporting electrolyte) is studied using the method of electrode washing. Transients of current and potentiodynamic curves show that the displacement of iodine adatoms from the Pt/Pt surface by CO is virtually complete when CO is adsorbed in the range of hydrogen adsorption potentials (E 0.35 V (RHE)) and incomplete at higher potentials. It is concluded that the bond formed by iodine adatoms with the surface strengthens with an increase in the potential. Possible reasons for the striking difference in the behavior of adatomic monolayers formed from KI and I2 solutions is discussed. The surface charge of Pt/Pt is observed to drastically change as a result of the displacement of iodine adatoms by carbon monoxide.  相似文献   

2.
C–C bond scission steps, which are often considered as rate-determining in ethane hydrogenolysis, are studied by the Unity Bond Index–Quadratic Exponential UBI–QEP method. The binding energies of atomic carbon with Group VIII and IB metal surfaces Ni(111), Pd(111), Pt(111), Rh(111), Ru(001), Ir(111), Fe(110), Cu(111), and Au(111) are estimated using experimental data on the adsorption of various species on these surfaces. These estimates are corrected using data from density functional theory (DFT) on the adsorption heats of the CH x species. Metal surfaces are arranged in the following series according to the binding strength of a carbon atom: Cu(111) < Au(111) < Pd(111) < Ru(001) Pt(111) < Ni(111) Rh(111) < Ir(111) < Fe(110). The values of chemisorption heats range from 121 kcal/mol for Au(111) to 193 kcal/mol for Fe(110). The activity of these surfaces toward C–C bond scission increases in the same series. The results of this work suggest that the most probable C–C bond scission precursors are ethyl, ethylidyne, adsorbed acetylene, CH2CH, CH2C, and CHC. Theoretical data obtained by different methods are compared and found to agree well with each other. An overview of experimental data on ethane hydrogenolysis mechanisms is given.  相似文献   

3.
B3LYP and SCF‐Xα calculations have been performed on PtnRu(10−n)CO (n = 6–10) clusters. The work aims to simulate the adsorption of CO on the (111) surface of platinum metal and to examine the electronic effects that arise when some Pt atoms are replaced with Ru. Adsorption energies and Pt C and C O stretching frequencies have been calculated for each cluster. Ru does affect the electronic structure of the clusters, the calculated adsorption energies, and frequencies, the Pt C frequency more than the C O. The donation‐backbonding mechanism that accompanies the shift in CO stretching frequency that occurs when CO adsorbs on platinum does not explain the differences in frequency shift observed in CO on various Pt/Ru surfaces. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 77: 589–598, 2000  相似文献   

4.
A number of complexes were synthesized with the general formula cis-[Ru(Bipy)2(L)(Cl)](BF4), where Bipy is 2,2"-bipyridine, L is pyridyne (Py), 4-aminopyridine (4-NH2py), 4-picoline (4-Mepy), nicotin-amide (3-CONH2py), isonicotinamide (4-CONH2py), 3- and 4-cyanopyridine (3-CNpy, 4-CNpy), 4,4"-bipyridine (4,4"-Bipy), trans-1,2-bis(4-pyridyl)ethylene (Bpe), 4,4"-azopyridine (Azpy), pyrazine (Pyz), imidazole (Imid), and NH3. The semiempirical CINDO-CI method was used to calculate the energies and intensities of transitions in the electronic absorption spectra. The differences observed in the spectra of these compounds are mainly due to the positions of the charge-transfer transitions d (Ru) *(L). Depending on the positions of these transitions, ligands L can be divided into three groups: 1) transitions Ru L lie in the region of the first long-wavelength band d (Ru) *(Bipy) (L = Azpy, Pyz); 2) transitions Ru L lie between the first and second bands due to the charge transfer to Bipy (L = 3-CONH2py, 4-CONH2py, 4,4"-Bipy, Bpe, 4-CNpy), and 3) transitions Ru L lie in the region of the second band d (Ru) *(Bipy) (L = Py, 4-Mepy, 3-CNPy, 4-NH2py, Imid).  相似文献   

5.
The correlation between structural and chemical properties of bimetallic PtRu/Ru(0001) model catalysts and their modification upon stepwise annealing of a submonolayer Pt‐covered Ru(0001) surface up to the formation of an equilibrated PtxRu1?x/Ru(0001) monolayer surface alloy was investigated by scanning tunneling microscopy and by the adsorption of CO and D2 probe molecules. Both temperature‐programmed desorption and IR measurements demonstrate the influence of the surface structure on the adsorption properties of the bimetallic surface, which can be explained by changes of the composition of the adsorption ensembles (ensemble effects) for D adsorption and by changes in the electronic interaction (ligand effects, strain effects) of the metallic constituents for CO and D adsorption upon alloy formation.  相似文献   

6.
A method is presented to represent the chemisorptive interactions concisely. The canonical molecular orbitals of a chemisorption system are transformed into new orbitals where the charge transfer interactions between the surface and the adsorbate are maximized or minimized. The chemisorptive bonds are well described by a small number of the transformed orbitals. The analysis of chemisorptive interactions is carried out for the Pt(111) + CO, W(110) + CO and Pt(112) + CO systems. The weakening of the C-O bond in the W(110) face and in the trench region of the Pt(112) face is larger than that in the Pt(111) face in conformity with the experimental data. The interactions are, to a good approximation, represented by five or six orbitals and are explained in terms of the and donation of CO to the surface and the back donation to CO.  相似文献   

7.
The reaction of the heterobinuclear metal -allenyl complexes (PPh3)2Pt(- 1: 2 , -C(R)=C=CH2)Ru(CO)Cp (R=H (1), Ph (2)) with (PPh3)AuO3SCF3 in THF at –78°C to room temperature affords the trimetallic products [(PPh3)2Pt( 2-CO)RuCpAu(PPh3)( 3- 1: 3: 1-CH2CCR)]+O3SCF 3 (R=H (3), Ph (4)) in 46 and 55% isolated yield, respectively. The products were characterized by a combination of elemental analysis, FAB mass spectrometry, and IR and 1H, 13C, and 31P NMR spectroscopy. The structure of 4 was elucidated by a single-crystal X-ray analysis. The crystal contains discrete trimetallic RuPtAu cations and CF3SO 3 anions. In the cation, a Pt–Ru bond of 2.7171(6) Å is supported by a semibridging CO and a CH2CCPh allyl, which is 3-bonded to Ru, and 1-bonded to each of Pt (through the CPh carbon) and Au (through the central carbon). The Ph3P–Au–C fragment is close to linear (175.0(2)°), and the coordination environment around Pt is distorted square planar. Complex 3 appears to have the same type of structure as 4 from spectroscopic data.  相似文献   

8.
9.
KTa0.65Nb0.35O3(KTN) thin films were prepared by sol-gel process on Pt(111)/Ti/MgO(100) substrates from KOAc, Ta(OC2H5)5 and Nb(OC2H5)5 in ethanol. The KTN thin films had a prefferred (100) orientation on Pt(111)/Ti/MgO(100) substrates and contained a small amount of pyrochlore structure phase. The 0.8-m-thick KTN film showed a room-temperature relative permittivity of 2160 and a room-temperature dielectric loss of 0.0098 at 1.0 kHz. The maximum relative permittivity of the KTN film was 4232 at 294 K and 1.0 kHz. The remanent polarization and coercive field of the KTN film were 2.8 C/cm2 and 5.0 kV/cm, respectively, at 263 K.  相似文献   

10.
The trans‐Pt(PBu3)2Cl2 complex reacts with 1 equiv. of 2,6‐diethynyl‐ AQ and 2 equiv. of 2‐ethynyl‐ AQ ( AQ = anthraquinone) to form the polymer (trans‐Pt(2,6‐diethynyl‐ AQ )2(PBu3)2)n, 1 , and the model compounds, 2 , trans‐Pt(PBu3)2(2‐ethynyl‐ AQ )2 (in a 20:1 ratio as trans‐( 2a ) and cis‐( 2b ) rotational isomers), respectively. These redox‐active and luminescent materials have been characterized by gel permeation chromatography, thermal gravimetric analysis, X‐ray crystallography, electrochemistry, photophysics, and DFT computations (B3LYP). The typical π,π* T2→S0 phosphorescence centered on the trans‐Pt(PBu3)2(aryl)2 chromophore, [Pt] , generally encountered for the analogous polymers (trans‐Pt(PBu3)2(aryl)2‐acceptor)n (acceptor = quinonediimine, QN2 ; anthraquinone diimine, AQN2 ), for which the CT T1→S0 emission is silent, has been completely annihilated and replaced by a red‐shifted T1→S0 emission in 1 and 2a , which arise from a triplet charge transfer excited state [Pt] → AQ .

  相似文献   


11.
12.
Comparative analysis of the donor-acceptor capacities of diphosphine ligands in two series of complexes: cis-[Ru(bpy)2(LL)]q + [LL = 2,2'-bipyridine (bpy), o-benzoquinonediimine (bqdi), cis-1,2-bis(diphenylphosphino)ethane, cis-1,2-bis(diphenylphosphino)ethylene (dppen), (NH3)2, and (CO)2] and [Ru(NH3)4. (LL)]2 + (LL = bpy, dppen, and bqdi), was performed. Diphosphines are the strongest donors; they compare in -acceptor capacity which is associated with phosphorus d orbitals with 2,2'-bipyridine and fall far short of o-benzoquinonediimine and carbonyl.  相似文献   

13.
The electrocatalytic activity of materials in the 10% Pt/Ti1–xRu x O2–δ system, where x = 0–0.3 (0 ≤ Ru ≤ 30 mol %), in the reactions of hydrogen electrooxidation in the presence of CO is studied in the liquid three-electrode cell and a model of fuel cell. It is shown that the tolerance of the electrocatalysts towards CO is determined by the crystal structure of the support: the support with the rutile structure provides a higher rate of CO desorption than the support with the anatase structure. The potential of the onset of CO oxidation decreases with increasing concentration of dopant in the support from 650 mV for 10% Pt/TiO2 to 480 mV (NHE) for 10% Pt/Ti0.91Ru0.09O2–δ (rutile). The use of these materials as the anodic catalysts of fuel cell operating with hydrogen containing 30 ppm CO enabled us to obtain a current density by 7 times higher as compared with the 20% PtRu/C E-Tec catalysts.  相似文献   

14.
The electrochemical oxidation of methanol was investigated on a Pt–Ru–Mo catalyst with an in situ infrared reflectance spectroscopy. The electrocatalysts were prepared by an electrochemical deposition and dispersed in a conducting three-dimensional matrix of polyaniline (PAni). We observed that CO2 is produced from methanol oxidation at 350 mV vs. RHE on PAni/Pt–Ru–Mo, which is 100 mV less negative than on PAni/Pt–Ru and 200 mV less than on PAni/Pt. The results suggest that Pt–Ru–Mo is less sensitive to COADS poisoning than Pt–Ru and much more sensitive than Pt. Large differences are observed concerning the average wavenumber of ADS between Pt–Ru–Mo, Pt–Ru, and Pt.  相似文献   

15.
Ruthenium and osmium were deposited in submonolayer amounts on Pt(111) single crystal surfaces using the previously reported ‘spontaneous deposition’ procedure [Chrzanowski et al., Langmuir, 13 (1997) 5974]. Such surfaces were first explored using ex situ scanning tunneling microscopy (STM) to image the deposition characteristics of ruthenium and osmium islands on Pt(111). It was found that, using the spontaneous deposition procedure, a maximum coverage of 0.20 ML ruthenium is formed on the surface after 120 s of exposure to a RuCl3 solution in 0.1 M HClO4. A homogeneous deposition on the Pt(111) surface was found, with no observed preferential deposition on step edges or surface defect sites. In contrast, in the spontaneous deposition of osmium, osmium clusters form preferentially at, though not limited to, surface defect sites and step edges. Osmium island deposition occurs at a greater rate than ruthenium on Pt(111), and possible explanations are presented. Methanol activity on the Pt(111)/Ru and Pt(111)/Os surfaces is also studied, using the coverage values determined to yield the highest activity for methanol electro-oxidation (0.20 ML coverage for Ru and 0.15 ML for Os). At potentials more negative than 0.40 V vs. RHE, the Pt(111)/Ru surface yields a higher surface activity than Pt(111)/Os. However, at potentials more positive than 0.04 V, Pt(111)/Os exhibits demonstrably higher surface activity. The relevance of this data is discussed and future avenues of interest are indicated.  相似文献   

16.
Highly (111)-oriented Pb0.97La0.02Zr0.85Sn0.13 Ti0.02O3(PLZST) antiferroelectric thin films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates through a modified sol-gel process technique. The electric field-induced antiferroelectric-to-ferroelectric (AFE‐FE) phase transformation behaviour was examined by C-V measurement. The results indicated that antiferroelectric (AFE) to ferrroelectric (FE) switching field , FE to AFE switching field were 315 kV/cm and 240 kV/cm respectively. The temperature dependence of the dielectric constant showed that the Curie temperature (T c) of the PLZST antiferroelectric thin films was 171°C. The voltage dependent current density of the highly (111)-oriented PLZST film was less than 1.3 × 10−6 A/cm2 over electric field range from 0 to ± 427 kV/cm.  相似文献   

17.
The synthesis, structural properties, and fluxional behaviour of platinum-triosmium and platinum-triruthenium clusters derived from Os3Pt(-H)2 (CO)10(PR3) and Ru3Pt(-H)(-CC t Bu)(CO)9 (dppe) and related species are described.  相似文献   

18.
Summary The Ru 3d5/2 and 3p3/2 x-ray photoelectron spectra of mono-and non-chlorinated ruthenium phthalocyanines were measured and the collected data on the core-level binding energies of ruthenium have been used to assess the oxidation state of the metal and the composition of the macrocyclic ligands.  相似文献   

19.
The Pt0 complex [Pt(PPh3)(Eind2‐BPEP)] with a pyridine‐based PNP‐pincer‐type phosphaalkene ligand (Eind2‐BPEP) has a highly planar geometry around Pt with ∑(Pt)=358.6°. This coordination geometry is very uncommon for formal d10 complexes, and the Pd and Ni homologues with the same ligands adopt distorted tetrahedral geometries. DFT calculations reveal that both the Pt and Pd complexes are M0 species with nearly ten valence electrons on the metals whereas their atomic orbital occupancies are evidently different from one another. The Pt complex has a higher occupancy of the atomic 6s orbital because of strong s–d hybridization due to relativistic effects, thereby adopting a highly planar geometry reflecting the shape and orientation of the partially unoccupied orbital.  相似文献   

20.
Degradation of a (-C7H7)(OC)2MoRu(CO)2(-C5H5)/carbon powder composite under appropriate thermal conditions affords a nanocomposite containing crystalline nanoclusters of Mo–Ru alloy highly dispersed on the carbon support. The alloy nanoparticles have an average diameter of 2.2 nm and crystallize as a fully disordered fcc lattice having a cell constant of 4.09 Å. When tested as an cathode catalyst in a direct methanol fuel cell, this nanocomposite shows significant methanol tolerance but affords current production too low to be of practical importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号