首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In LH2 complexes of Rhodobacter sphaeroides the formation of a carotenoid radical cation has recently been observed upon photoexcitation of the carotenoid S2 state. To shed more light onto the yet unknown molecular mechanism leading to carotenoid radical formation in LH2, the interactions between carotenoid and bacteriochlorophyll in LH2 are investigated by means of quantum chemical calculations for three different carotenoids--neurosporene, spheroidene, and spheroidenone--using time-dependent density functional theory. Crossings of the calculated potential energy curve of the electron transfer state with the bacteriochlorophyll Qx state and the carotenoid S1 and S2 states occur along an intermolecular distance coordinate for neurosporene and spheroidene, but for spheroidenone no crossing of the electron transfer state with the carotenoid S1 state could be found. By comparison with recent experiments where no formation of a spheroidenone radical cation has been observed, a molecular mechanism for carotenoid radical cation formation is proposed in which it is formed via a vibrationally excited carotenoid S1 or S*state. Arguments are given why the formation of the carotenoid radical cation does not proceed via the Qx, S2, or higher excited electron transfer states.  相似文献   

2.
Carotenoids are essential constituents of plant light-harvesting complexes (LHCs), being involved in protein stability, light harvesting, and photoprotection. Unlike chlorophylls, whose binding to LHCs is known to require coordination of the central magnesium, carotenoid binding relies on weaker intermolecular interactions (such as hydrogen bonds and van der Waals forces), whose character is far more elusive. Here we addressed the key interactions responsible for carotenoid binding to LHCs by combining molecular dynamics simulations and polarizable quantum mechanics/molecular mechanics calculations on the major LHC, LHCII. We found that carotenoid binding is mainly stabilized by van der Waals interactions with the surrounding chlorophyll macrocycles rather than by hydrogen bonds to the protein, the latter being more labile than predicted from structural data. Furthermore, the interaction network in the binding pockets is relatively insensitive to the chemical structure of the embedded carotenoid. Our results are consistent with a number of experimental data and challenge the role played by specific interactions in the assembly of pigment-protein complexes.

Carotenoids are essential constituents of plant light-harvesting complexes. This in silico study shows that carotenoid binding is mainly driven by van der Waals interactions with the surrounding chlorophylls rather than hydrogen bonds to the protein.  相似文献   

3.
Light‐harvesting complexes (LHC) in photosynthetic organisms perform the major function of light absorption and energy transportation. Optical spectrum of LHC provides a detailed understanding of the molecular mechanisms involved in the excitation energy transfer (EET) processes, which has been widely studied. Here, we study how the geometric property of LHC in Rhodospirillum (Rs.) molischianum would affect its spectral characteristics and energy transfer process. By adopting the effective Hamiltonian and the dipole–dipole approximation, we calculate the exciton level structures for the LH2 ring and LH1 ring and the energy transfer time between different LHCs under various structural parameters and different rotational symmetries. Our numerical results show that the LHC's absorption peaks and the energy transfer time between different LHCs can be modified by changing the geometric configurations. Our study may be beneficial to the applications in designing highly efficient photovoltaic cell and other artificial photosynthetic systems.  相似文献   

4.
Carotenoids are the crucial pigments involved in photoprotection and in scavenging harmful free radicals in all living organisms. The underlying chemical processes are charge transfer and free radical reactions, both of them leading to carotenoid radical cation (Car*+) formation. Accurate knowledge of the molecular properties of Car*+ is thus a prerequisite for understanding of their function as photoprotective and antioxidant agents. Despite their fundamental importance in nonphotochemical quenching in green plants, only little is known about the Car*+ excited states and their dynamics. Our combined experimental and theoretical investigation employing femtosecond time-resolved pump-probe spectroscopy and quantum chemical calculations proves the existence of a second low-lying pipi* excited-state energetically below the well-known strongly allowed excited-state responsible for the intense absorption of Car*+ in the near-IR region. Hence, we suggest denoting the latter state as D3 state in the future. Our findings have also implications for nonphotochemical quenching in green plants, since direct quenching of chlorophyll excited states by Forster energy transfer to Car*+ is possible and efficient.  相似文献   

5.
6.
We have studied the triplet energy transfer (TET) for photosynthetic light-harvesting complexes, the bacterial light-harvesting complex II (LH2) of Rhodospirillum molischianum and Rhodopseudomonas acidophila, and the peridinin-chlorophyll a protein (PCP) from Amphidinium carterae. The electronic coupling factor was calculated with the recently developed fragment spin difference scheme (You and Hsu, J. Chem. Phys. 2010, 133, 074105), which is a general computational scheme that yields the overall coupling under the Hamiltonian employed. The TET rates were estimated based on the couplings obtained. For all light-harvesting complexes studied, there exist nanosecond triplet energy transfer from the chlorophylls to the carotenoids. This result supports a direct triplet quenching mechanism for the photoprotection function of carotenoids. The TET rates are similar for a broad range of carotenoid triplet state energy, which implies a general and robust TET quenching role for carotenoids in photosynthesis. This result is also consistent with the weak dependence of TET kinetics on the type or the number of π conjugation lengths in the carotenoids and their analogues reported in the literature. We have also explored the possibility of forming triplet excitons in these complexes. In B850 of LH2 or the peridinin cluster in PCP, it is unlikely to have triplet exciton since the energy differences of any two neighboring molecules are likely to be much larger than their TET couplings. Our results provide theoretical limits to the possible photophysics in the light-harvesting complexes.  相似文献   

7.
A series of phthalocyanine-carotenoid dyads in which a phenylamino group links a phthalocyanine to carotenoids having 8-11 backbone double bonds were examined by visible and near-infrared femtosecond pump-probe spectroscopy combined with global fitting analysis. The series of molecules has permitted investigation of the role of carotenoids in the quenching of excited states of cyclic tetrapyrroles. The transient behavior varied dramatically with the length of the carotenoid and the solvent environment. Clear spectroscopic signatures of radical species revealed photoinduced electron transfer as the main quenching mechanism for all dyads dissolved in a polar solvent (THF), and the quenching rate was almost independent of carotenoid length. However, in a nonpolar solvent (toluene), quenching rates displayed a strong dependence on the conjugation length of the carotenoid and the mechanism did not include charge separation. The lack of any rise time components of a carotenoid S(1) signature in all experiments in toluene suggests that an excitonic coupling between the carotenoid S(1) state and phthalocyanine Q state, rather than a conventional energy transfer process, is the major mechanism of quenching. A pronounced inhomogeneity of the system was observed and attributed to the presence of a phenyl-amino linker between phthalocyanine and carotenoids. On the basis of accumulated work on various caroteno-phthalocyanine dyads and triads, we have now identified three mechanisms of tetrapyrrole singlet excited state quenching by carotenoids in artificial systems: (i) Car-Pc electron transfer and recombination; (ii)(1) Pc to Car S(1) energy transfer and fast internal conversion to the Car ground state; (iii) excitonic coupling between (1)Pc and Car S(1) and ensuing internal conversion to the ground state of the carotenoid. The dominant mechanism depends upon the exact molecular architecture and solvent environment. These synthetic systems are providing a deeper understanding of structural and environmental effects on the interactions between carotenoids and tetrapyrroles and thereby better defining their role in controlling natural photosynthetic systems.  相似文献   

8.
Nonphotochemical quenching is the photoprotection mechanism by which the excess excitation energy absorbed by the light harvesting complex LHCII is dissipated through the protein scaffold as heat. Using the quenched structure of LHCII obtained from crystallographic experiments, the potential quenching of photoexcited excitons by aggregates of chlorophylls is theoretically investigated. In monomeric LHCII there is a hierarchy of length scales resulting in a hierarchy of energy scales that determine the interpigment direct Coulomb coupling. We propose a model whereby eight chlorophylls are coupled quantum mechanically into four dimers, with exciton transfer between these dimers and the remaining six single chlorophylls proceeding incoherently via Forster transfer. The chlorophyll dimer Chl a604-Chl b606 possesses a quasi-parallel geometry, resulting in a weakly dipole-allowed low-lying excited state. This weakly allowed state is accessible via exciton transfer to a higher, strongly allowed state followed by fast vibrational relaxation. This parallel, H-type aggregate can potentially function as an exciton trap. Calculated Forster transfer rates between single chlorophylls and chlorophyll dimers are used in a simulation of exciton transfer in monomeric LHCII to explore this possibility. It is found that Chl a604-Chl b606 has a short-lived enhanced population (on the time scale of approximately picoseconds), but not a long-time resident population. The fluorescence quantum yield of the model was calculated to be phi F = 0.38. Comparison of this result with phi F approximately 0.26 for unquenched LHCII in dilute solution and phi F approximately 0.06 for the highly quenched LHCII crystal reveals that the proposed model does not account for the quenching observed in the LHCII crystal. We therefore conclude that the formation of chlorophyll dimers is not the main cause of excitonic NPQ in LHCII.  相似文献   

9.
Carotenoids play the dual function of light harvesting and photoprotection in photosynthetic organisms. Despite their functional importance, the molecular basis for binding of carotenoids in the photosynthetic proteins is poorly understood. We have discovered that all carotenoids are surrounded either by aromatic residues or by chlorophylls in all known crystal structures of the photosynthetic pigment-protein complexes. The intermolecular pi-pi stacking interactions between carotenoids and the surrounding aromatic residues in the light-harvesting complex II (LH-II) of Rhodospirillum molischianum were analyzed by high level ab initio electronic structure calculations. Intermolecular interaction energies were calculated with the second-order M?ller-Plesset perturbation method (MP2) using the modified 6-31G*(0.25) basis set with diffuse d-polarization by Hobza and co-workers. The MP2/6-31G*(0.25) calculations yield a total stabilization energy of -15.66 kcal/mol between the carotenoid molecule and the four surrounding aromatic residues (alpha-Trp-23, beta-Phe-20, beta-Phe-24, beta-Phe-27). It is thus concluded that pi-pi stacking interactions between carotenoids and the aromatic residues play an essential role in binding carotenoids in the LH-II complex of Rhodospirillum molischianum. The physical nature of the pi-pi stacking interactions was further analyzed, and the dispersion interactions were found to be the dominant intermolecular attraction force. There is also a substantial electrostatic contribution to the overall intermolecular stabilization energy.  相似文献   

10.
Abstract— Absorption changes attributed to the triplet state of carotenoids and to primary electron donors (P-700. P-680): and fluorescence quenching at several wavelengths have been measured with a single apparatus. following flash excitation with a dye or a ruby laser. Spinach chloroplasts as well as subchloroplast particles enriched in Photosystem-1 (F1), Photosystem-2 (F1) or the light-harvesting Chl a/h (FIII) have been examined at temperatures varying between 5 and 294 K.
The triplet state of carotenoids has been identified on the basis of its difference spectrum (having a peak at 515 nm) and decay kinetics (⋍ 7 µs at low temperature; accelerated by O2 at 294 K). It is formed in all of the materials studied. The quantum yield of carotenoid triplet formation in chloroplasts increases at low temperature, but less than the fluorescence yield.
In most cases the fluorescence quenching recovers approximately with the same kinetics as the decay of the carotenoid triplets. The fluorescence recovery is, however, significantly faster for chloroplasts at 730 nm. Fluorescence quenching occurs in all types of materials. The ratio of fluorescence quenching to the concentration of carotenoid triplets varies with the material, being maximum in chloroplasts and minimum in Fm particles.
We conclude that the formation of the carotenoid triplet state is not limited to a few sites in the chloroplast and that a carotenoid triplet is a quencher of chlorophyll fluorescence. A detailed comparison of carotenoid triplets and fluorescence quenching gives some information concerning the organization of the pigments in the photosynthetic apparatus.  相似文献   

11.
Electronic interactions between the first excited states (S(1)) of carotenoids (Car) of different conjugation lengths (8-11 double bonds) and phthalocyanines (Pc) in different Car-Pc dyad molecules were investigated by two-photon spectroscopy and compared with Car S(1)-chlorophyll (Chl) interactions in photosynthetic light harvesting complexes (LHCs). The observation of Chl/Pc fluorescence after selective two-photon excitation of the Car S(1) state allowed sensitive monitoring of the flow of energy between Car S(1) and Pc or Chl. It is found that two-photon excitation excites to about 80% to 100% exclusively the carotenoid state Car S(1) and that only a small fraction of direct tetrapyrrole two-photon excitation occurs. Amide-linked Car-Pc dyads in tetrahydrofuran demonstrate a molecular gear shift mechanism in that effective Car S(1) → Pc energy transfer is observed in a dyad with 9 double bonds in the carotenoid, whereas in similar dyads with 11 double bonds in the carotenoid, the Pc fluorescence is strongly quenched by Pc → Car S(1) energy transfer. In phenylamino-linked Car-Pc dyads in toluene extremely large electronic interactions between the Car S(1) state and Pc were observed, particularly in the case of a dyad in which the carotenoid contained 10 double bonds. This observation together with previous findings in the same system provides strong evidence for excitonic Car S(1)-Pc Q(y) interactions. Very similar results were observed with photosynthetic LHC II complexes in the past, supporting an important role of such interactions in photosynthetic down-regulation.  相似文献   

12.
On direct photoexcitation, subpicosecond time-resolved absorption spectroscopy revealed that the 1B(u)-type singlet excited state of all-trans-lycopene in chloroform was about seven times more efficient than all-trans-beta-carotene in generating the radical cation. The time constant of radical cation generation from the 1B(u)-type state was found to be approximately 0.14 ps, a value that was comparable for the two carotenoids. On anthracene-sensitized triplet excitation, radical cation generation was found to be much less efficient for lycopene than for beta-carotene. A slow rising phase (20-30 micros) in the bleaching of ground-state absorption was common for both lycopene and beta-carotene in chloroform and was ascribed to an efficient secondary reaction with a solvent radical leading to the formation of carotenoid radical cations. The reverse ordering in the tendency of the excited states of different multiplicities for the two carotenoids to generate radical cations is discussed in relation to the two carotenoids as scavengers of free radicals.  相似文献   

13.
Abstract— In this short communication we present the stoichiometric ratio of bacteriochlorophyll, bacteriopheophytin and carotenoids in a few photosynthetic purple bacteria complexes (whose two-dimensional or three-dimensional structures are well known) determined using the spectrum-reconstruction method (SRCM). An important conclusion of our pigment stoichiometric analysis is the evidence for the absence of the second carotenoid in the light-harvesting complex 2 (LH2). In the process, we also highlight the useful application of SRCM in determining the molar extinction coefficients of carotenoids present in LH1, LH2 or reaction centers for which these values are not known due to isolation problems and/or stability.  相似文献   

14.
Abstract— Black lipid membranes (BLM) were prepared from extracts of Chlorella and spinach chloroplasts. Excitation spectra of the 730 nm fluorescence of chlorophyll a in the BLM contained peaks identified as due to carotenoids and which therefore indicate sensitization of the chlorophyll fluorescence by them. The efficiency of this energy transfer was evaluated by comparison of the actual excitation spectra with those corresponding to 0 and 100 per cent transfer efficiency. Efficiencies were of the order of 40–50 per cent in BLM, but only 10 per cent in pigment solutions, when the mean distance between pigment molecules was 23 Å in both systems. The fluorescence quantum yield of chlorophyll a in such solutions was only 2 per cent of that found in BLM. Enhancement of energy transfer in BLM is considered to be mainly due to suppression of competing deactivation processes of excited carotenoid states, such as diffusional quenching by ground-state molecules and internal conversion. Favorable orientation of pigment molecules in the BLM constitutes a further enhancement factor.  相似文献   

15.
16.
In this study, we investigate the excited states and absorption spectra of a natural light-harvesting system by means of subsystem density functional theory. In systems of this type, both specific interactions of the pigments with surrounding protein side chains as well as excitation energy transfer (EET) couplings resulting from the aggregation behavior of the chromophores modify the photophysical properties of the individual pigment molecules. It is shown that the recently proposed approximate scheme (J. Chem. Phys. 2007, 126, 134116) for coupled excitations within a subsystem approach to time-dependent DFT is capable of describing both effects in a consistent manner, and is efficient enough to study even the large assemblies of chromophores occurring in the light-harvesting complex 2 (LH2) of the purple bacterium Rhodopseudomonas acidophila. A way to extract phenomenological coupling constants as used in model calculations on EET rates is outlined. The resulting EET coupling constants and spectral properties are in reasonable agreement with the available reference data. Possible problems related to the effective exchange-correlation kernel are discussed.  相似文献   

17.
Carotenoids are essential pigments in natural photosynthesis. They absorb in the blue–green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and so expand the wavelength range of light that is able to drive photosynthesis. This process is an example of singlet–singlet energy transfer and so carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. Carotenoids also act to protect photosynthetic organisms from the harmful effects of excess exposure to light. In this case, triplet–triplet energy transfer from (bacterio-)chlorophyll to carotenoid plays a key role in this photoprotective reaction. In the light-harvesting pigment–protein complexes from purple photosynthetic bacteria and chlorophytes, carotenoids have an additional role, namely the structural stabilization of those complexes. In this article we review what is currently known about how carotenoids discharge these functions. The molecular architecture of photosynthetic systems will be outlined to provide a basis from which to describe the photochemistry of carotenoids, which underlies most of their important functions in photosynthesis. Then, the possibility to utilize the functions of carotenoids in artificial photosynthetic light-harvesting systems will be discussed. Some examples of the model systems are introduced.  相似文献   

18.
Abstract— The mechanism of action of xanthophyll cycle carotenoids in controlling the quenching of chlorophyll fluorescence in the major light-harvesting complex of photosystem II (LHCIIb) has been investigated. Auroxanthin, a diepoxy carotenoid with 7 conjugated carbon double bonds, violaxanthin (9 conjugated double bonds) and zeaxanthin (11 conjugated double bonds) have been compared with regard to their effects in vitro on fluorescence quenching and LHCIIb oligomerization. It was found that auroxanthin stimulated fluorescence quenching, similar to the effect of zeaxanthin and in contrast to the inhibition caused by violaxanthin. Auroxanthin caused an increase in the oligomerization of LHCIIb and an increase in relative emission of long-wavelength fluorescence at 77 K. It is concluded that auroxanthin can mimic the effect of zeaxanthin on LHCII, strongly suggesting that the xanthophyll cycle carotenoids control quenching in vitro by an indirect structural effect and not by direct quenching of chlorophyll excited states.  相似文献   

19.
Steady-state and ultrafast time-resolved optical spectroscopic investigations have been carried out at 293 and 10 K on LH2 pigment-protein complexes isolated from three different strains of photosynthetic bacteria: Rhodobacter (Rb.) sphaeroides G1C, Rb. sphaeroides 2.4.1 (anaerobically and aerobically grown), and Rps. acidophila 10050. The LH2 complexes obtained from these strains contain the carotenoids, neurosporene, spheroidene, spheroidenone, and rhodopin glucoside, respectively. These molecules have a systematically increasing number of pi-electron conjugated carbon-carbon double bonds. Steady-state absorption and fluorescence excitation experiments have revealed that the total efficiency of energy transfer from the carotenoids to bacteriochlorophyll is independent of temperature and nearly constant at approximately 90% for the LH2 complexes containing neurosporene, spheroidene, spheroidenone, but drops to approximately 53% for the complex containing rhodopin glucoside. Ultrafast transient absorption spectra in the near-infrared (NIR) region of the purified carotenoids in solution have revealed the energies of the S1 (2(1)Ag-)-->S2 (1(1)Bu+) excited-state transitions which, when subtracted from the energies of the S0 (1(1)Ag-)-->S2 (1(1)Bu+) transitions determined by steady-state absorption measurements, give precise values for the positions of the S1 (2(1)Ag-) states of the carotenoids. Global fitting of the ultrafast spectral and temporal data sets have revealed the dynamics of the pathways of de-excitation of the carotenoid excited states. The pathways include energy transfer to bacteriochlorophyll, population of the so-called S* state of the carotenoids, and formation of carotenoid radical cations (Car*+). The investigation has found that excitation energy transfer to bacteriochlorophyll is partitioned through the S1 (1(1)Ag-), S2 (1(1)Bu+), and S* states of the different carotenoids to varying degrees. This is understood through a consideration of the energies of the states and the spectral profiles of the molecules. A significant finding is that, due to the low S1 (2(1)Ag-) energy of rhodopin glucoside, energy transfer from this state to the bacteriochlorophylls is significantly less probable compared to the other complexes. This work resolves a long-standing question regarding the cause of the precipitous drop in energy transfer efficiency when the extent of pi-electron conjugation of the carotenoid is extended from ten to eleven conjugated carbon-carbon double bonds in LH2 complexes from purple photosynthetic bacteria.  相似文献   

20.
Key to efficient harvesting of sunlight in photosynthesis is the first energy conversion process in which electronic excitation establishes a trans-membrane charge gradient. This conversion is accomplished by the photosynthetic reaction center (RC) that is, in case of the purple photosynthetic bacterium Rhodobacter sphaeroides studied here, surrounded by light harvesting complex 1 (LH1). The RC employs six pigment molecules to initiate the conversion: four bacteriochlorophylls and two bacteriopheophytins. The excited states of these pigments interact very strongly and are simultaneously influenced by the surrounding thermal protein environment. Likewise, LH1 employs 32 bacteriochlorophylls influenced in their excited state dynamics by strong interaction between the pigments and by interaction with the protein environment. Modeling the excited state dynamics in the RC as well as in LH1 requires theoretical methods, which account for both pigment-pigment interaction and pigment-environment interaction. In the present study we describe the excitation dynamics within a RC and excitation transfer between light harvesting complex 1 (LH1) and RC, employing the hierarchical equation of motion method. For this purpose a set of model parameters that reproduce RC as well as LH1 spectra and observed oscillatory excitation dynamics in the RC is suggested. We find that the environment has a significant effect on LH1-RC excitation transfer and that excitation transfers incoherently between LH1 and RC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号