首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Abstract— …According to the criteria of enhancement in D2O and inhibition by sodium azide, the oxidation of tyramine photosensitized by methylene blue is largely a singlet oxygen or Type II process. Its quantum yield approximates 0.3 in D2O at pH 10. There is a less efficient reaction not quenched by azide, which is assigned to a dye-substrate or Type I process. It gives rise to products with distinct bands at 320 and 285nm. Products of the Type I reaction are further oxidized by singlet oxygen and thereby compete with tyramine for this reagent. Kinetic parameters were estimated by computer simulation of the dependence of quantum yield on extent of reaction. The rate constant for reaction of O2 (1Δg) with tyramine was estimated to be 2.8 × 108 M -1 s -1± 20% at pH 10. The reaction was also sensitized by hypericin in what appears to be a Type II process.  相似文献   

2.
ON THE MECHANISM OF QUENCHING OF SINGLET OXYGEN IN SOLUTION   总被引:2,自引:0,他引:2  
Abstract— Bimolecular rate constants for the quenching of singlet oxygen O*2(1Δg), have been obtained for several transition-metal complexes and for β-carotene. Laser photolysis experiments of aerated solutions, in which triplet anthracene is produced and quenched by oxygen, yielding singlet oxygen which then sensitizes absorption due to triplet carotene, firmly establishes diffusion-controlled energy transfer from singlet oxygen as the quenching mechanism in the case of β-carotene. The efficient quenching of singlet oxygen by two trans-planar Schiff-base Ni(II) complexes, which have low-lying triplet ligand-field states, most probably also occurs as a result of electronic energy transfer, since an analogous Pd(II) complex and ferrocene, which both have lowest-lying triplet states at higher energies than the O*2(1Δg), state, quench much less effectively.  相似文献   

3.
Abstract— A correction is offered to the approximate values previously given by Mendenhall (1978) for the enthalpy of formation and entropy of O2(a1Δg) and O2(b1+) between 298 and 1500 K. Accurate values have been calculated for the functions together with the equilibrium constants for the formation of these species from O2(X3σg-).  相似文献   

4.
Abstract— The laser flash photolysis method has been used to determine the bimolecular rate constants for the reaction between O2(1Δ9) and several lipid-soluble and water-soluble substrates. Values for lipid-soluble substrates have been obtained using aqueous dispersions of surfactants above the critical micelle concentration with 1,3 diphenylisobenzofuran as monitor of singlet oxygen. Under these conditions the hydrophobic substances are solubilized by the micellar phase. For substrates which are water-soluble, 9,10-anthracene dipropionic acid disodium salt was used as singlet oxygen monitor. For several substances, the values obtained are comparable to the values found in homogeneous nonaqueous solutions. In cases where significant differences have been found these have been rationalized according to the individual case. The only major unexpected result concerned β-carotene which, in micellar dispersion, failed to react at all with O2(1Δ9) This may be due to multi-molecular aggregations occurring in the polar medium. The work described herein shows clearly that, under appropriate conditions, singlet oxygen kinetics can be effectively followed in aqueous solutions by time resolved methods. The indiscriminate use of β-carotene as a quencher of O2(1Δ9)in mainly aqueous media is questioned.  相似文献   

5.
Abstract— The photochemical conversion of isoeugenol to vanillin can proceed via the 1O2 (1Δg) state of oxygen and can be effected over a wide range of base and dye concentrations. A typical situation involving methylene blue (0.3 mM), isoeugenol (24 mM) and a base concentration of 0.1 N will give yields of approximately 35% of the theoretical amount.  相似文献   

6.
Abstract— The mechanism for photodegradation of the ultraviolet photostabilizer 2-(2'-hydroxy-5'-methylphenyl)benzotriazole (TIN P) upon direct and dye-sensitized (singlet molecular oxygen [O2(1Δg)]-mediated) irradiation was studied. From the experimental TIN P photodegradation rate data, and low temperature (77 K) fluorescence and phosphorescence quantum yields, one can conclude that the photodegradative process involves phosphorescent states of TIN P. The open conformer of TIN P quenches O2(1Δg) by physical scavenging with a rate constant (kq) in dimethylsulfoxide of 2.8 times 106 M -1 s-1. The intramolecular hydrogen-bonded conformer does not appreciably interact with O2(1Δg). In the presence of a relatively high concentration of OH- (either 5 times 10-2 M KOH in ethanol or water at pH 13), the ionic form of TIN P (with an ionized phenol group) physically and chemically quenches O2(1Δg). The reaction rate constant ( k r) is 1 times 10 8 M -1 s-1, and the ratio k q/ k r is approximately three in alkaline aqueous media.  相似文献   

7.
Abstract— The physical quenching of singlet molecular oxygen (1Δg) by amino acids and proteins in D2O solution has been measured by their inhibition of the rate of singlet oxygen oxidation of the bilirubin anion. Steady-state singlet oxygen concentrations are produced by irradiating the oxygenated solution with the 1–06 μm output of a Nd-YAG laser, which absorbs directly in the electronic transition 1Δg+ 1 v →3Σg-. The rate of quenching by most of the proteins studied is approximated by the sum of the quenching rates of their amino acids histidine, tryptophan and methionine, which implies that these amino acids in the protein structure are all about equally accessible to the singlet oxygen. The quenching constants differ from those obtained by the ruby-laser methylene-blue-photosensitized method of generating singlet oxygen, or from the results of steady-state methylene-blue-photosensitized oxidation, where singlet oxygen is assumed to be the main reactive species. The singlet oxygen quenching rates in D2O, pD 8, are (107ℒ mol-1 s-1): alanine 0–2, methionine 3, tryptophan 9, histidine 17, carbonic anhydrase 85, lysozyme 150, superoxide dismutase 260, aposuperoxide dismutase 250.  相似文献   

8.
Abstract— The possibility of 1O2 (1Δg) participation in the oxidation of polyphenols and quinones has been investigated in two systems: (1) the system involving autooxidation leading to oxidative polymerization and destruction, and (2) the modified Trautz-Schorigin reaction, i.e. oxidation of polyphenols and HCHO with H2O2 in concentrated alkaline solutions. The red band with maximum at 635 nm observed in chemiluminescence of pyrocatechol, adrenaline, pyrogallol, gallic acid, adrenochrome and p -benzoquinone corresponds to the transition 2O2(1Δg) → 2O2(3Σ-g). Emission bands in the range 475–540 nm arise from the superposition of the 2O2(1Δg) → 2O2(3Σ-g) transition and radiative deactivation of excited oxidation products. In system (2) chemiluminescence has a broad band from 580 nm beyond 800 nm and much higher intensity than in system (1). Formaldehyde was found to enhance light emission in system (1) by a factor of about 30. The influence of solvents, including D2O in which 1O2 has varying lifetimes, on kinetics of chemiluminescence as well as quenching effect of β-carotene, hydroquinone, cysteine, bilirubin and biliverdin strongly support the involvement of 1O2 in the chemiluminescence of both systems.  相似文献   

9.
Abstract— The photosensitized oxidation of 10–100 μ M N -acetyl-L-tryptophanamide (NATA) in neutral aqueous solution and in the presence of various dyes proceeds by a pure O2(1Δg)-involving mechanism. Incorporation of the tryptophyl (Trp) residue into the polypeptide chain of human serum albumin (HSA) has no influence on the mechanism and efficiency of Trp photooxidation when sensitized either by methylene blue, a non-binding dye, or by rose bengal, a dye that gives non-covalent 1: 1 complexes with HSA. This is due to the location of the Trp residue in close proximity of the protein surface and, in the case of rose bengal, to the coincidence of the photophysical properties (including the quantum yield of O2(1Δg) generation) for the free and HSA-bound dye. Hematoporphyrin also binds to HSA with 1: 1 stoichiometry, although at a different site from rose bengal. Bound Hp again displays photophysical properties very similar with those of free Hp; however, the efficiency of Trp photo-oxidation in HSA is about 5-fold higher than in NATA owing to a limited rearrangement of the protein structure, induced by Hp binding, which enhances the probability of chemical quenching of O2(1Δg) by the indole ring.  相似文献   

10.
The spectral distribution of the chemiluminescence, fluorescence and phosphorescence of tryptophan aqueous solutions irradiated with high and low pressure mercury lamps has been measured. The blue emission bands in the region of 380–520 nm observed both in the chemi- and photoluminescence, as well as an absorbance increase at 230 and 330 nm, indicate oxidative degradation of tryptophan leading to the formation of derivatives of N-formylkynurenine, xanthurenic and anthranilic acids. Red emission bands at 630 and 705 nm in the spectrum of the chemiluminescence, an enhancement of light intensity by D2O and its decrease by NaN3 and DABCO suggest a partial contribution of O2(1Δg) to the photooxidation and chemiluminescence of tryptophan. The enthalpy of the exergonic reactions, leading to the formation of luminescing products, was calculated to average -270 kJ-mol.  相似文献   

11.
Abstract— From spectroscopic data and rate constants in the literature, equilibrium constants and rates of thermal formation of singlet oxygen (1Δg and 1Σg+) were calculated for a number of conditions. For the gas phase we estimate K eq(1Δg3Σg-) = 1.67 exp(-94.31 KJ/RT) and K eq(1Σg+/3Σg-) = 0.33 exp(-157.0 KJ/RT). The calculated rate constants for the 3Σg+1Δg transition of O2 at 25°C varied from 2.5 × 10-11 s-1 in water to 4.8 × 10-16 s-1 in air, assuming equal solvent interactions with the ground and excited states. Physical quenchers for singlet oxygen are expected to be catalysts for its thermal formation. Equations are presented which allow one to estimate whether such catalysis by quenchers will result in a pro-oxidant effect.  相似文献   

12.
Abstract— The hematoporphyrin-sensitized production of singlet molecular oxygen, O2(1Δg), has been investigated in methanol and in aqueous solution. The quantum yield for formation of O2(1Δg) (ΦΔ) has been measured by both steady-state (oxygen consumption) and time-resolved (near-infrared luminescence) methods. In methanol, both techniques indicate that ΦΔ= 0.76 and the value remains independent of sensitizer concentration over a wide range. This finding is consistent with the dye persisting in a monomelic form in methanol solution. In contrast, ΦΔ decreases markedly with increasing sensitizer concentration in water due to dimerization of the dye. Analysis of the steady-state data indicates ΦΔ values of 0.74 and 0.12, respectively, for monomer and dimer. It is further shown that the efficiency whereby quenching of the triplet state by O2 results in generation of O2(1Δg) is substantially lower for the dimer than for the corresponding monomer. Because monomer and dimer possess quite different absorption spectral profiles, the efficacy for photodynamic action with hematoporphyrin exhibits a pronounced wavelength dependence.  相似文献   

13.
Abstract— Peroxidation of tannins with alkaline H2O2 is accompanied by weak chemiluminescence in the spectral region 480–800 nm. o-Di and tri-hydroxy groups of polyphenols undergo oxidation by a free-radical mechanism and a green intermediate anion-radical with absorption Δmax= 600 nm is formed. The radical mechanism is supported by the low activation energy 14–20 kJ/mol and the quenching effect of radical scavengers. The reaction of the green intermediate with peroxy anions is the chemiluminescence rate limiting step. In the presence of a-hydroxy-methylperoxide formed from H2O2 and formaldehyde, the alkaline peroxidation of tannins is accompanied by strong red luminescence (420–800 nm). The base catalyzed decomposition of peroxides gives only a weak red emission (460–800 nm). Light intensity is enhanced in D2O by a factor 6.5. Quenchers of O2(1Δg) and 1,3-di-phenylisobenzofurane diminish light intensity in non-aqueous solutions. The data suggest 1O2 participation in the observed chemiluminescence. Thermo-chemical calculations give —ΔH values from 250–1000 kJ/mol for one elementary reaction step which limits the mechanism of chemi-enereization. Chemiexcitation of tannins is relevant to biochemical mechanisms of aerobic degradation of aromatic compounds, energy utilization as well as to defense and resistance processes in plants.  相似文献   

14.
Abstract— The relative reactivity of singlet molecular oxygen, 02(1Δg), α-,β-,Γ-and δ with -tocopherol (vitamin E) was investigated using microwave discharge generation as a uniquely clean source of singlet oxygen and using a hydrocarbon solvent to approximate the membrane environment. The relative efficiencies of the tocopherols for O2(1Δg) were found to decrease in the order: D-α-tocopherol > D-β-tocopheroI > D–Γ-tocopherol > D-δ-tocopherol. The reaction products in all cases were found to be mixtures of quinone and quinone epoxides apparently resulting from decomposition of the primary product, the hydroperoxydienone.  相似文献   

15.
Abstract— Photophysical properties of two chlorin type molecules (CHLI) and (CHLII) were investigated in different solvents. Quantum yields of fluorescence φF of S, → T, intersystem crossing φT, and of singlet oxygen (1Δg) formation φΔ, as well as the Stern-Volmer constants for the quenching of the S, states by oxygen and the bimolecular rate constants of quenching of 1Δg by the chlorins were measured. The values of φT and φΛ can be given as 0.57 and 0.58 for CHLI and 0.69 and 0.58 for CHLII. The values of the fluorescence quantum yields, the strong absorption of the chlorins in the red (Λ > 630 nm) and the high values of the quantum yields for 1Δg formation recommend the chlorin derivatives as potential markers and photosensitizers for tumor therapy.  相似文献   

16.
Abstract— Flash photolysis was used to study the reduction of the triplet state of methylene blue by both alkyl- and aryl-amines. The extent of the formation of the semireduced form of the dye yielded rate constants of interaction between the triplet state and the amine ( k 5). A correlation between log k 5 and ionization potentials for alkylamines (slope = -1.75 eV-1) was interpreted as evidence for the formation of a partial charge-transfer intermediate. The rate constants ( k 5) calculated for aryl-amines approached the rate of diffusion in many cases. A Hammett plot for a series of N, N-dimethyl-anilines yielded a moderately large p value (– 3.28) consistent with the formation of a charge-transfer intermediate. It was concluded that reaction of amines with triplet methylene blue leads to the formation of a partial charge-transfer intermediate which may undergo complete electron transfer to yield radicals, or undergo spin inversion and return to the ground state.  相似文献   

17.
Abstract— Experiments are described that enable the kinetic behavior of singlet oxygen, O2(IΔg), to be monitored in the time-resolved mode using a photomultiplier to detect deep orange light (γmax 660 nm). This orange light is a consequence of the upconversion of the natural emission of O2(IΔg) at 1269 nm.  相似文献   

18.
Abstract— The photooxidation of epinephrine, sensitized by methylene blue or by chlorophylls, excited with red light, involves the reduction of two molecules of oxygen to hydrogen peroxide per molecule of epinephrine oxidized to adrenochrome. The initial rates of these reactions are not affected by low concentrations of catalase. In 99 mol % D2O, rates of methylene blue sensitized photooxidations are accelerated as much as 5.2 times over rates in ordinary water. Azide anion is a more effective inhibitor of this reaction in D2O than in H2O. Half maximal inhibitions are obtained by 1.3 mM azide in H2O and by 0.1 mAf azide in D2O. Isotope effects and azide sensitivities point to photooxidation of epinephrine in D2O primarily by a singlet oxygen pathway; in H2O, non-singlet oxygen pathways become more predominant. Superoxide dismutase (SOD) markedly inhibits rates of the photooxidations in H2O and in D2O; about 25% at 10-9 M SOD, and 50% at 10-6 M SOD in H2O. In the photooxidation in H2O, both by non-singlet and singlet oxygen mechanisms, the amount of superoxide produced is equivalent to the amount of O2 consumed in the photooxidation of epinephrine; the superoxide thus formed participates in the oxidation of epinephrine.  相似文献   

19.
Abstract— Direct time-resolved detection of the luminescence at 1270 nm from 'singlet oxygen' was used to estimate the quantum yield of singlet oxygen production (ΦΔ) from a series of related porphyrins in benzene and in D2O. From this and available data the fraction of oxygen quenching interactions leading to singlet oxygen production (SΔ) was derived in most cases. A marked increase in ΦΔ value was observed for di-haematoporphyrin ester (DHE) in cetyltrimethyl ammonium bromide/D2O solution in comparison to D2O alone, this increase is attributed to a major structural alteration of DHE on introduction of the detergent.  相似文献   

20.
Abstract— Two new sensitizers are introduced for a potential use in photodynamic therapy: Zn2+- and MG2+-tetrabenzoporphyrin (ZnTBP and MgTBP). A comparative study of the quantum yields of singlet oxygen generation (ΦΔ) of hematoporphyrin derivative (HpD), Photofrin II (PF-II), Zn2+-phthalocyanine tetrahydroxyl [ZnPC(OH)4] and the newly introduced sensitizers ZnTBP and MgTBP in liposomes, as well as the kinetics of a photochemical reaction sensitized by them, was made by employing the fluorescent membrane probe 9,10-dimethylanthracene (DMA). We followed the photosensitization of DMA in real time by monitoring its fluorescence decrease at 457 nm and found that DMA's photosensitization is oxygen mediated. The kinetic traces of the photosensitization reactions were fitted to an analytical function, and the ΦΔ values were evaluated. At 10 μ M sensitizer in an aqueous suspension of 2 mg/mL egg phosphatidylcholine (EPC), HpD was found to have the largest value of ΦΔ (0.215), followed by PF-II (0.191), ZnTBP (0.023), MgTBP (0.019) and ZnPC(OH)4 (0.005). As a test of the method, ΦΔ for methylene blue in ethanol was measured and found to be 0.45 as compared to 0.52 reported in the literature. Due to difference in the sensitizers' absorbances at the laser's wavelength, the reaction photosensitized by ZnTBP was the fastest with a time constant of 6.7 min, followed by MgTBP (8.7), PF-II (11.9), HpD (17.1) and ZnPC(OH)4 (31.2), all at equal sensitizers' concentrations and laser intensities. The binding constants of the sensitizers to EPC liposomes are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号