首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In-doped ZnO (ZnO:In) transparent conductive thin films were deposited on glass substrates by RF magnetron sputtering. The effect of substrate temperature on the structural, electrical and optical properties of the ZnO:In thin films was investigated. It was found that higher temperature improves the crystallinity of the films and promotes In substitution easily. ZnO:In thin films with the best crystal quality were fabricated at 300 °C, which exhibit a larger grain size of 29 nm and small tensile strain of 0.9%. The transmittance of all the films was revealed to be over 85% in the visible range independence of the substrate temperatures and the lowest resistivity of ZnO:In thin films is 2.4×10−3 Ω cm.  相似文献   

2.
Tin oxide (SnO2) thin films were grown on Si (1 0 0) substrates using pulsed laser deposition (PLD) in O2 gas ambient (10 Pa) and at different substrate temperatures (RT, 150, 300 and 400 °C). The influence of the substrate temperature on the structural and morphological properties of the films was investigated using X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). XRD measurements showed that the almost amorphous microstructure transformed into a polycrystalline SnO2 phase. The film deposited at 400 °C has the best crystalline properties, i.e. optimum growth conditions. However, the film grown at 300 °C has minimum average root mean square (RMS) roughness of 3.1 nm with average grain size of 6.958 nm. The thickness of the thin films determined by the ellipsometer data is also presented and discussed.  相似文献   

3.
Highly transparent and conductive scandium doped zinc oxide (ZnO:Sc) films were deposited on c-plane sapphire substrates by sol–gel technique using zinc acetate dihydrate [Zn(CH3COO)2·2H2O] as precursor, 2-methoxyethanol as solvent and monoethanolamine as a stabilizer. The doping with scandium is achieved by adding 0.5 wt% of scandium nitrate hexahydrate [(ScNO3·6H2O)] in the solution. The influence of annealing temperature (300–550 °C) on the structural, optical and electrical properties was investigated. X-ray Diffraction study revealed that highly c-axis oriented films with full-width half maximum of 0.16° are obtained at an annealing temperature of 400 °C. The surface morphology of the films was judged by SEM and AFM images which indicated formation of grains. The average transmittance was found to be above 92% in the visible region. ZnO:Sc film, annealed at 400 °C exhibited minimum resistivity of 1.91 × 10−4 Ω cm. Room-temperature photoluminescence measurements of the ZnO:Sc films annealed at 400 °C showed ultraviolet peak at 3.31eV with a FWHM of 11.2 meV, which are comparable to those found in high-quality ZnO films. Reflection high-energy electron diffraction pattern confirmed the epitaxial nature of the films even without introducing any buffer layer.  相似文献   

4.
Using a pulsed laser deposition (PLD) process on a ZnO target in an oxygen atmosphere, thin films of this material have been deposited on Si(111) substrates. An Nd: YAG pulsed laser with a wavelength of 1064 nm was used as the laser source. The influences of the deposition temperature, laser energy, annealing temperature and focus lens position on the crystallinity of ZnO films were analyzed by X-ray diffraction. The results show that the ZnO thin films obtained at the deposition temperature of 400°C and the laser energy of 250 mJ have the best crystalline quality in our experimental conditions. The ZnO thin films fabricated at substrate temperature 400°C were annealed at the temperatures from 400°C to 800°C in an atmosphere of N2. The results show that crystalline quality has been improved by annealing, the optimum temperature being 600°C. The position of the focusing lens has a strong influence on pulsed laser deposition of the ZnO thin films and the optimum position is 59.5 cm from the target surface for optics with a focal length of 70 cm.   相似文献   

5.
Ga-doped ZnO (ZnO:Ga) transparent conductive films were deposited on glass substrates by DC reactive magnetron sputtering. The structural, electrical, and optical properties of ZnO:Ga films were investigated in a wide temperature range from room temperature up to 400 °C. The crystallinity and surface morphology of the films are strongly dependent on the growth temperatures, which in turn exert an influence on the electrical and optical properties of the ZnO:Ga films. The film deposited at 350 °C exhibited the relatively well crystallinity and the lowest resistivity of 3.4 × 10−4 Ω cm. More importantly, the low-resistance and high-transmittance ZnO:Ga films were also obtained at a low temperature of 150 °C by changing the sputtering powers, having acceptable properties for application as transparent conductive electrodes in LCDs and solar cells.  相似文献   

6.
Direct current magnetron sputter-deposited ZnO thin films   总被引:1,自引:0,他引:1  
Zinc oxide (ZnO) is a very promising electronic material for emerging transparent large-area electronic applications including thin-film sensors, transistors and solar cells. We fabricated ZnO thin films by employing direct current (DC) magnetron sputtering deposition technique. ZnO films with different thicknesses ranging from 150 nm to 750 nm were deposited on glass substrates. The deposition pressure and the substrate temperature were varied from 12 mTorr to 25 mTorr, and from room temperature to 450 °C, respectively. The influence of the film thickness, deposition pressure and the substrate temperature on structural and optical properties of the ZnO films was investigated using atomic force microscopy (AFM) and ultraviolet-visible (UV-Vis) spectrometer. The experimental results reveal that the film thickness, deposition pressure and the substrate temperature play significant role in the structural formation and the optical properties of the deposited ZnO thin films.  相似文献   

7.
ZnO/SiO2 thin films were fabricated on Si substrates by E-beam evaporation with thermal retardation. The as-prepared films were annealed for 2 h every 100 °C in the temperature range 400-800 °C under ambient air. The structural and optical properties were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and photoluminescence (PL). The XRD analysis indicated that all ZnO thin films had a highly preferred orientation with the c-axis perpendicular to the substrate. From AFM images (AFM scan size is 1 μm×1 μm), the RMS roughnesses of the films were 3.82, 5.18, 3.65, 3.40 and 13.2 nm, respectively. PL measurements indicated that UV luminescence at only 374 nm was observed for all samples. The optical quality of the ZnO film was increased by thermal retardation and by using an amorphous SiO2 buffer layer.  相似文献   

8.
Ga doped ZnO (GZO) thin films were deposited on glass substrates at room temperature by continuous composition spread (CCS) method. CCS is thin films growth method of various GaxZn1−xO(GZO) thin film compositions on a substrate, and evaluating critical properties as a function position, which is directly related to material composition. Various compositions of Ga doped ZnO deposited at room temperature were explored to find excellent electrical and optical properties. Optimized GZO thin films with a low resistivity of 1.46 × 10−3 Ω cm and an average transmittance above 90% in the 550 nm wavelength region were able to be formed at an Ar pressure of 2.66 Pa and a room temperature. Also, optimized composition of the GZO thin film which had the lowest resistivity and high transmittance was found at 0.8 wt.% Ga2O3 doped in ZnO.  相似文献   

9.
Zirconium doped zinc oxide thin films were deposited by reactive chemical pulverization spray pyrolysis technique on heated glass substrates at 400 °C, 450 °C and 500 °C using zinc and zirconium chlorides as precursors. The effect of zirconium dopant and surface roughness on the nonlinear optical properties was investigated using atomic force microscopy (AFM) and third harmonic generation (THG). The best value of susceptibility χ(3) was obtained from the doped films with less roughness. A strong third order nonlinear optical susceptibility χ(3) = 20.49 × 10−12 (esu) of the studied films was found for the 5% doped sample at 450 °C.  相似文献   

10.
ZnO thin films were grown on (111) CaF2 substrates by magnetron sputtering at room temperature. Structural and optical properties of the ZnO thin films were studied. XRD analysis showed that the ZnO thin films had the (002) preferential orientation. The transmittance of ZnO thin films was over 80% in the visible range. The optical band gap of the ZnO thin films was 3.26 eV. The optical constants (n,k)(n,k) of the ZnO thin films in the wavelength range 300–1000 nm were obtained by infrared spectroscopic ellipsometry measurement. PL spectra of ZnO thin films showed strong UV near-band-edge emission peak at 376.5 nm and weak visible red emission at 643.49 nm using He–Cd laser as the light source, using a synchrotron radiation light source PL spectra showed three emission peak at 320 nm, 410 nm and 542 nm respectively.  相似文献   

11.
N-In codoped ZnO thin films were prepared by ion beam enhanced deposition method (IBED) and were annealed in nitrogen and oxygen ambient after deposition. The influence of post-annealing on structure, electrical and optical properties of thin films were investigated. As-deposited and all post-annealed samples showed preferential orientation along (0 0 2) plane. Electrical property studies indicated that the as-deposited ZnO film showed p-type with a sheet resistance of 67.5 kΩ. For ZnO films annealed in nitrogen with the annealing temperature increasing from 400 to 800 °C, the conduction type of the ZnO film changed from p-type to n-type. However, for samples annealed in oxygen the resistance increased sharply even at a low annealing temperature of 400 °C and the conduction type did not change. Room temperature PL spectra of samples annealed in N2 and in O2 showed UV peak located at 381 and 356 nm, respectively.  相似文献   

12.
In-doped ZnO (ZnO:In) transparent conductive thin films were deposited on glass substrates by RF magnetron sputtering. The effect of substrate temperature on the structural, electrical and optical properties of the ZnO:In thin films was investigated. It was found that higher temperature improves the crystallinity of the films and promotes In substitution easily. ZnO:In thin films with the best crystal quality were fabricated at 300 °C, which exhibit a larger grain size of 29 nm and small tensile strain of 0.9%. The transmittance of all the films was revealed to be over 85% in the visible range independence of the substrate temperatures and the lowest resistivity of ZnO:In thin films is 2.4×10−3 Ω cm.  相似文献   

13.
We have investigated the microstructure, electrical and magnetic properties of the ZnCoO thin films, which were prepared by the asymmetrical bipolar-pulsed DC magnetron sputtering as a function of substrate temperature. The structural properties of ZnCoO films were characterized with a high resolution XRD. The XRD patterns of the ZnCoO films showed a strong (0 0 2) preferential orientation. The average crystallite size was 23–35 nm, which was estimated from full width at half maximum of XRD results. The electrical resistivity of the films were measured by the van der Pauw method through Hall measurement and showed below 10−1 Ω cm above 300 °C. The magnetic properties of the ZnCoO films were analyzed by the alternating gradient magnetometer at room temperature. All of the films were exhibited the ferromagnetic nature. The high conductivity and room temperature ferromagnetism of the ZnCoO films above 300 °C suggested that the possibility for the application to diluted magnetic semiconductors.  相似文献   

14.
In this work, ZnO thin films have been prepared by spray pyrolysis deposition method on the glass substrates. The effect of deposition parameters, such as deposition rate, substrate temperature and solution volume has been studied by X-ray diffraction (XRD) method, UV–Vis–NIR spectroscopy, scanning electron microscopy (SEM), and electrical measurements. The XRD patterns indicate polycrystalline wurtzite structure with preferred direction along (0 0 2) planes. Thin films have transparency around 90% in the visible range. The optical band gap was determined at 3.27 eV which did not change significantly. Evolution of electrical results containing the carriers’ density, sheet resistance and resistivity are in agreement with structural results. All the results suggest the best deposition parameters are: deposition rate, R = 3 ml/min, substrate temperature, T s = 450°C and thickness of the thin films t = 110–130 nm.  相似文献   

15.
p-Type ZnO thin films have been realized via doping Li as acceptor by using pulsed laser deposition. In our experiment, Li2CO3 was used as Li precursor, and the growth temperature was varied from 400 to 600 °C in pure O2 ambient. The Li-doped ZnO film prepared at 450 °C possessed the lowest resistivity of 34 Ω cm with a Hall mobility of 0.134 cm2 V−1 s−1 and hole concentration of 1.37 × 1018 cm−3. X-ray diffraction (XRD) measurements showed that the Li-doped ZnO films grown at different substrate temperatures were of completely (0 0 2)-preferred orientation.  相似文献   

16.
Al and Sb codoped ZnO nanorod ordered array thin films have been deposited on glass substrate with a ZnO seed layer by hydrothermal method at different growth time. The effect of growth time on structure, Raman shift, and photoluminescence (PL) was studied. The thin films at growth time of 5 h consist of nanorods growth vertically oriented with ZnO seed layer, and the nanorods with an average diameter of 27.8 nm and a length of 1.02 μm consist of single crystalline wurtzite ZnO crystal and grow along [0 0 1] direction. Raman scattering analysis demonstrates that the thin films at the growth time of 5 h have great Raman shift of 15 cm−1 to lower wavenumber and have low asymmetrical factor Гa/Гb of 1.17. Room temperature photoluminescence reveals that there is more donor-related PL in films with growth time of 5 h.  相似文献   

17.
Ti-doped ZnO (ZnO:Ti) thin films were deposited on the glass and Si substrates using radio frequency reactive magnetron sputtering. The effects of substrate on the microstructures and optical properties of ZnO:Ti thin films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and a fluorescence spectrophotometer. The structural analyses of the films indicated that they were polycrystalline and had a hexagonal wurtzite structure on different substrates. When ZnO:Ti thin film was deposited on Si substrate, the film had a c-axis preferred orientation, while preferred orientation of ZnO:Ti thin film deposited on glass substrate changed towards (1 0 0). Finally, we discussed the influence of the oxygen partial pressures on the structural and optical properties of glass-substrate ZnO:Ti thin films. At a high ratio of O2:Ar of 18:10 sccm, the intensity of (0 0 2) diffraction peak was stronger than that of (1 0 0) diffraction peak, which indicated that preferred orientation changed with the increase of O2:Ar ratios. The average optical transmittance with over 93% in the visible range was obtained independent of the O2:Ar ratio. The photoluminescence (PL) spectra measured at room temperature revealed four main emission peaks located at 428, 444, 476 and 527 nm. Intense blue-green luminescence was obtained from the sample deposited at a ratio of O2:Ar of 14:10 sccm. The results showed that the oxygen partial pressures had an important influence for PL spectra and the origin of these emissions was discussed.  相似文献   

18.
Transparent conducting indium doped zinc oxide was deposited on glass substrate by ultrasonic spray method. The In doped ZnO samples with indium concentration of 3 wt.% were deposited at 300, 350 and 400 °C with 2 min of deposition time. The effects of substrate temperature and annealing temperature on the structural, electrical and optical properties were examined. The DRX analyses indicated that In doped ZnO films have polycrystalline nature and hexagonal wurtzite structure with (0 0 2) preferential orientation and the maximum average crystallite size of ZnO: In before and annealed at 500 °C were 45.78 and 55.47 nm at a substrate temperature of 350 °C. The crystallinity of the thin films increased by increasing the substrate temperature up 350 °C, the crystallinity improved after annealing temperature at 500 °C. The film annealed at 500 °C and deposited at 350 °C show lower absorption within the visible wavelength region. The band gap energy increased from Eg = 3.25 to 3.36 eV for without annealing and annealed films at 500 °C, respectively, indicating that the increase in the transition tail width. This is due to the increase in the electrical conductivity of the films after annealing temperature.  相似文献   

19.
Cerium fluoride (CeF3) thin films were evaporated to the germanium substrates at different substrate temperature from 100 °C to 250 °C. Structural and optical properties were characterized by X-ray diffraction (XRD), scan electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The morphology of samples deposited at different temperature can be closely related to preferred orientation. The infrared optical constants were obtained by fitting the transmission spectrum using Lorentz oscillator model. A simple example for fabrication of long-wave infrared broadband antireflection coating was also presented.  相似文献   

20.
Y2SiO5:Ce phosphor thin films were grown onto Si(100) substrates with pulsed laser deposition (PLD) using a 248-nm KrF excimer laser. Process parameters were varied during the growth process and the effect on the surface morphology and cathodoluminescence (CL) was analysed. The process parameters that were changed included the following: gas pressure (vacuum (5×10−6 Torr), 1×1−2 Torr and 1 Torr O2), different gas species (O2, Ar and N2 at a pressure of 455 mTorr), laser fluence (1.6±0.1 J cm−2 and 3.0±0.3 J cm−2) and substrate temperature (400 and 600°C). The surface morphology was investigated with atomic force microscopy (AFM). The morphology of the thin films ablated in vacuum and 10 mTorr ambient O2 showed more or less the same trend. An increase in the pressure to 1 Torr O2, however, showed a definite increase in deposited particle sizes. Ablation in N2 gas resulted in small particles of 20 nm in diameter and ablation in O2 gas produced bigger particles of 20, 30 and 40 nm as well as an agglomeration of these particles into bigger size clusters of 80 to 100 nm. Ablation in Ar gas led to particle sizes of 30 nm and the particles were much more spherically defined and evenly distributed on the surface. The higher fluence deposition led to bigger particle and grain sizes as well as thicker layers with respect to the lower fluence. The particle sizes of the higher fluence vary mainly between 130 and 140 nm and the lower fluence sizes vary between 50 and 60 nm. The higher fluence particles consist of smaller particles ranging from 5 to 30 nm as measured with AFM. The surface structure of the thin film ablated at 400°C substrate temperature is less compact (lesser agglomeration of particles than at 600°C). The increase in substrate temperature definitely resulted in a rougher surface layer. CL was measured to investigate the effect of the surface morphology on the luminescent intensities. The increased O2 ambient (1 Torr) resulted in a higher CL intensity compared to the thin films ablated in vacuum. The thin film ablated in Ar gas showed a much higher CL intensity than the other thin films. Ablation at a high fluence resulted in a higher CL intensity. The higher substrate temperature resulted in better CL intensities. The more spherically shaped particles and rougher surface led to increase CL intensities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号