首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Microfluidic diaphragm valves and pumps capable of surviving conditions required for unmanned spaceflight applications have been developed. The Pasteur payload of the European ExoMars Rover is expected to experience temperatures ranging between -100 degrees C and +50 degrees C during its transit to Mars and on the Martian surface. As such, the Urey instrument package, which contains at its core a lab-on-a-chip capillary electrophoresis analysis system first demonstrated by Mathies et al., requires valving and pumping systems that are robust under these conditions before and after exposure to liquid samples, which are to be analyzed for chemical signatures of past or present living processes. The microfluidic system developed to meet this requirement uses membranes consisting of Teflon and Teflon AF as a deformable material in the valve seat region between etched Borofloat glass wafers. Pneumatic pressure and vacuum, delivered via off-chip solenoid valves, are used to actuate individual on-chip valves. Valve sealing properties of Teflon diaphragm valves, as well as pumping properties from collections of valves, are characterized. Secondary processing for embossing the membrane against the valve seats after fabrication is performed to optimize single valve sealing characteristics. A variety of different material solutions are found to produce robust devices. The optimal valve system utilizes a membrane of mechanically cut Teflon sandwiched between two thin spun films of Teflon AF-1600 as a composite "laminated" diaphragm. Pump rates up to 1600 nL s(-1) are achieved with pumps of this kind. These high pumping rates are possible because of the very fast response of the membranes to applied pressure, enabling extremely fast pump cycling with relatively small liquid volumes, compared to analogous diaphragm pumps. The developed technologies are robust over extremes of temperature cycling and are applicable in a wide range of chemical environments.  相似文献   

2.
Huang X  Ren J 《Electrophoresis》2005,26(19):3595-3601
In this paper we present a sensitive chemiluminescence (CL) detection of heme proteins coupled with microchip IEF. The detection principle was based on the catalytic effects of the heme proteins on the CL reaction of luminol-H2O2 enhanced by para-iodophenol. The glass microchip and poly(dimethylsiloxane) (PDMS)/glass microchip for IEF were fabricated using micromachining technology in the laboratory. The modes of CL detection were investigated and two microchips (glass, PDMS/glass) were compared. Certain proteins, such as cytochrome c, myoglobin, and horseradish peroxidase, were focused by use of Pharmalyte pH 3-10 as ampholytes. Hydroxypropylmethylcellulose was added to the sample solution in order to easily reduce protein interactions with the channel wall as well as the EOF. The focused proteins were transported by salt mobilization to the CL detection window. Cytochrome c, myoglobin, and horseradish peroxidase were well separated within 10 min on a glass chip and the detection limits (S/N=3) were 1.2x10(-7), 1.6x10(-7), and 1.0x10(-10) M, respectively.  相似文献   

3.
Li MW  Martin RS 《Electrophoresis》2007,28(14):2478-2488
Here we describe a reversibly sealed microchip device that incorporates poly(dimethylsiloxane) (PDMS)-based valves for the rapid injection of analytes from a continuously flowing stream into a channel network for analysis with microchip electrophoresis. The microchip was reversibly sealed to a PDMS-coated glass substrate and microbore tubing was used for the introduction of gas and fluids to the microchip device. Two pneumatic valves were incorporated into the design and actuated on the order of hundreds of milliseconds, allowing analyte from a continuously flowing sampling stream to be injected into an electrophoresis separation channel. The device was characterized in terms of the valve actuation time and pushback voltage. It was also found that the addition of sodium dodecyl sulfate (SDS) to the buffer system greatly increased the reproducibility of the injection scheme and enabled the analysis of amino acids derivatized with naphthalene-2,3-dicarboxaldehyde/cyanide. Results from continuous injections of a 0.39 nL fluorescein plug into the optimized system showed that the injection process was reproducible (RSD of 0.7%, n = 10). Studies also showed that the device was capable of monitoring off-chip changes in concentration with a device lag time of 90 s. Finally, the ability of the device to rapidly monitor on-chip concentration changes was demonstrated by continually sampling from an analyte plug that was derivatized upstream from the electrophoresis/continuous flow interface. A reversibly sealed device of this type will be useful for the continuous monitoring and analysis of processes that occur either off-chip (such as microdialysis sampling) or on-chip from other integrated functions.  相似文献   

4.
Liu C  Cui D  Cai H  Chen X  Geng Z 《Electrophoresis》2006,27(14):2917-2923
We present a novel concept of glass/poly(dimethylsiloxane) (PDMS)/glass sandwich microchip and developed a thin-casting method for fabrication. Unlike the previously reported casting method for fabricating PDMS microchip, several drops of PDMS prepolymer were first added on the silanizing SU-8 master, then another glass plate was placed over the prepolymer as a cover plate, and formed a glass plate/PDMS prepolymer/SU-8 master sandwich mode. In order to form a thin PDMS membrane, a weight was placed on the glass plate. After the whole sandwich mode was cured at 80 degrees C for 30 min, the SU-8 master was easily peeled and the master microstructures were completely transferred to the PDMS membrane which was tightly stuck to the glass plate. The microchip was subsequently assembled by reversible sealing with the glass cover plate. We found that this PDMS sandwich microchip using the thin-casting method could withstand internal pressures of >150 kPa, more than 5 times higher than that of the PDMS hybrid microchip with reversible sealing. In addition, it shows an excellent heat-dissipating property and provides a user-friendly rigid interface just like a glass microchip, which facilitates manipulation of the microchip and fix tubing. As an application, PDMS sandwich microchips were tested in the capillary electrophoresis separation of fluorescein isothiocyanate-labeled amino acids.  相似文献   

5.
Cellular functions are frequently exploited as processing components for integrated chemical systems such as biochemical reactors and bioassay systems. Here, we have created a new cell-based microsystem exploiting the intrinsic pulsatile mechanical functions of cardiomyocytes to build a cellular micropump on-chip using cardiomyocyte sheets as prototype bio-microactuators. We first demonstrate cell-based control of fluid motion in a model microchannel without check valves and evaluate the potential performance of the bio-actuation. For this purpose, a poly(dimethylsiloxane) (PDMS) microchip with a microchannel equipped with a diaphragm and a push-bar structure capable of harnessing collective cell fluid mechanical forces was coupled to a cultured pulsating cardiomyocyte sheet, activating cell-based fluid movement in the microchannel by actuating the diaphragm. Cell oscillation frequency and correlated fluid displacement in this system depended on temperature. When culture temperature was increased, collective cell contraction frequency remained cooperative and synchronous but increased, while displacement was slightly reduced. We then demonstrated directional fluid pumping within microchannels using cantilever-type micro-check valves made of polyimide. A directional flow rate of nL min(-1) was produced. This cell micropump system could be further developed as a self-actuated and efficient mechanochemical transducer requiring no external energy sources for various purposes in the future.  相似文献   

6.
This paper presents a simple fluid handling technique for microchip immunoassay. Necessary solutions were sequentially injected into a microchannel by air-evacuated poly(dimethylsiloxane), and were passively regulated by capillary force at the inlet opening. For heterogeneous immunoassay, microchips are potentially useful for reduction of sample consumption and assay time. However, most of the previously reported microchips have limitations in their use because of the needs for external power sources for fluid handling. In this paper, an on-chip heterogeneous immunofluorescence assay without such an external power source is demonstrated. The microchip consisting of poly(dimethylsiloxane) (PDMS) and glass has a simple structure, and therefore is suitable for single-use applications. Necessary solutions were sequentially injected into a microchannel in an autonomous fashion with the power-free pumping technique, which exploits the high solubility and the rapid diffusion of air in PDMS. For deionized water, this method yielded flow rates of 3-5 nL s-1 with reproducibility of 4-10%. The inlet opening of the microchannel functioned as a passive valve to hold the solution when the flow was finished. Rabbit immunoglobulin G (rIgG) and human C-reactive protein (CRP) were detected using the microchannel walls as reaction sites. With the sample consumption of 1 microL and the assay time of approximately 20 min including the antibody immobilization step, the sandwich immunoassay methods for rIgG and CRP exhibited the limits of detection of 0.21 nM (0.21 fmol) and 0.42 nM (0.42 fmol), respectively.  相似文献   

7.
A novel microfluidic DNA extraction protocol based on integrated diaphragm microvalves/pumps and silica-deposited open-channel columns was developed specifically for automated and parallel DNA solid-phase extraction (SPE). The method uses microfluidic chips with a sandwiched structure containing three layers, which are the upper fluidic layer with surface-deposited silica on glass open channels as the extraction phase, the lower actuation layer with valve actuation channels on a glass wafer, and the middle poly(dimethylsiloxane) (PDMS) membrane for reversible bonding of the two glass substrates. These two glass substrates can be reused after thoroughly cleaning and the PDMS membrane can be replaced conveniently, which could effectively decrease the time and cost of chip manufacturing. The normally closed microvalves/pumps were used to automatically control all processes of the on-chip DNA SPE without cross-contamination and leakage, enabling the processing of multiple samples in parallel without changing the microvalve control module. Using the microchip device with integrated microvalves/pumps, automated, programmable, and simultaneous λ-DNA extractions from different samples could be attained, even from complex solutions such as human blood, and the silica-deposited open-channel columns could be reused stably and reliably. Results have demonstrated that most of the eluted λ-DNA was recovered in the second 2 µL of elution buffer with high-purity suitable for successful polymerase chain reaction amplification, making it possible for further integration into microfluidic devices for fully functional and high-throughput genetic analysis.  相似文献   

8.
A miniature valve that operates between a chip port and a tube fitting was developed. The valve functions by means of a rotor, 3 mm in diameter and 1.5 mm in height, made of Teflon, with a 0.2-mm diameter hole at its center that is co-axial with the tube fitting. It also has a radial groove, 0.85 mm long, 0.2 mm wide, and 0.2 mm deep, at the bottom surface, starting at its center. The chip port and the tube fitting have an offset of 0.75 mm, and, thus, the rotation of the rotor can make an on and off connection between the chip port and the groove, which is connected to the tubing. The valve had a pressure resistance of at least 1.0 MPa. The on-chip valve can be placed in position by adding only a single part, a valve rotor, and no changes in the fabrication of the glass microchip are required. Since the valve functions as a part of a connector, we refer to it as an on-chip connector valve. Immunoaffinity chromatography of a fluorescence-labeled recombinant antibody fragment was carried out in a glass microchip using the valves.  相似文献   

9.
Catechol estrogen-derived DNA adducts are formed as a result of the reaction of catechol estrogen metabolites (e.g., catechol estrogen quinones) with DNA to form depurinating adducts. Developing a new methodology for the detection of various DNA adducts is essential for medical diagnostics, and to this end, we demonstrate the applicability of on-chip capillary electrophoresis with an integrated electrochemical system for the separation and amperometric detection of various catechol estrogen-derived DNA adducts. A hybrid PDMS/glass microchip with in-channel amperometric detection interfaced with in situ palladium decoupler is utilized and presented. The influence of buffer additives along with the effect of the separation voltage on the resolving power of the microchip is discussed. Calibration plots were constructed in the range 0.4–10 μM with r 2 ≥ 0.999, and detection limits in the attomole range are reported. These results suggest that on-chip analysis is applicable for analyzing various DNA adducts as potential biomarkers for future medical diagnostics.  相似文献   

10.
For the first time, the application of a commercial Shimadzu microchip electrophoresis system MCE-2010 equipped with an imaging UV detector for isoelectric focusing (IEF) of therapeutic proteins is reported. By proper adjustment of the pH gradient, samples with pI values ranging from 2.85 to 10.3 can be focused to the imaged part of the separation channel. Three therapeutic proteins (hirudin, erythropoietin, and bevacizumab) have been successfully focused on the microchip, and the results have been compared to conventional capillary IEF in terms of peak profile, pI values, and reproducibility.  相似文献   

11.
The first reported use of a carbon paste electrochemical detector for microchip capillary electrophoresis (CE) is described. Poly(dimethylsiloxane) (PDMS)-based microchip CE devices were constructed by reversibly sealing a PDMS layer containing separation and injection channels to a separate PDMS layer that contained carbon paste working electrodes. End-channel amperometric detection with a single electrode was used to detect amino acids derivatized with naphthalene dicarboxaldehyde. Two electrodes were placed in series for dual electrode detection. This approach was demonstrated for the detection of copper(II) peptide complexes. A major advantage of carbon paste is that catalysts can be easily incorporated into the electrode. Carbon paste that was chemically modified with cobalt phthalocyanine was used for the detection of thiols following a CE separation. These devices illustrate the potential for an easily constructed microchip CE system with a carbon-based detector that exhibits adjustable selectivity.  相似文献   

12.
建立了一种简单、可靠的空间温度梯度芯片毛细管电泳DNA突变分析系统, 制作了热阻呈梯度均匀变化的硅橡胶(PDMS)基片, 利用其热阻变化对热传导的影响, 在基片表面形成稳定的空间温度梯度. 通过改变PDMS基片的厚度差, 可得到范围不同的温度梯度, 且形成的温度梯度在6 h内保持稳定. 利用该温度梯度加热装置对玻璃微流控芯片进行加热, 在10 ℃温度梯度范围内对209 bp的DNA突变标准样品进行分离检测, 单次样品分析时间为8.3 min, 并成功用于3例大肠癌患者石蜡组织切片中K-ras基因突变的检测.  相似文献   

13.
The first carbon-based dual-electrode detector for microchip capillary electrophoresis (CE) is described. The poly(dimethylsiloxane) (PDMS)-based microchip CE devices were constructed by reversibly sealing a PDMS layer containing separation and injection channels to another PDMS layer containing carbon fiber working electrodes. End-channel amperometric detection was employed and the performance of the chip was evaluated using catechol. The response was found to be linear between 1 and 600 microM with an experimentally determined limit of detection (LOD) of 500 nM and a sensitivity of 30 pA/microM. Collection efficiencies for catechol ranged from 36.0 to 43.7% at field strengths of 260-615 V/cm. The selectivity that can be gained with these devices is demonstrated by the first CE-based dual-electrode detection of a Cu(II) peptide complex. These devices illustrate the potential for a rugged and easily constructed microchip CE system with an integrated carbon-based detector of similar scale.  相似文献   

14.
Bruin GJ 《Electrophoresis》2000,21(18):3931-3951
This review is devoted to the rapid developments in the field of microfluidic separation devices in which the flow is electrokinetically driven, and where the separation element forms the heart of the system, in order to give an overview of the trends of the last three years. Examples of microchip layouts that were designed for various application areas are given. Optimization of mixing and injection strategies, designs for the handling of multiple samples, and capillary array systems show the enormous progress made since the first proof-of-concept papers about lab-on-a-chip devices. Examples of functional elements for on-chip preconcentration, filtering, DNA amplification and on-chip detection indicate that the real integration of various analytical tasks on a single microchip is coming into reach. The use of materials other than glass, such as poly(dimethylsiloxane) and polymethylmethacrylate, for chip fabrication and detection methods other than laser-induced fluorescence (LIF) detection, such as mass spectrometry and electrochemical detection, are described. Furthermore, it can be observed that the separation modes known from capillary electrophoresis (CE) in fused-silica capillaries can be easily transferred to the microchip platform. The review concludes with an overview of applications of microchip CE and with a brief outlook.  相似文献   

15.
Kim J  Baek J  Lee K  Park Y  Sun K  Lee T  Lee S 《Lab on a chip》2006,6(8):1091-1094
In this paper, we present a simple check valve whose operation mimics that of venous valves. Our check valve has a mono-leaflet and is constructed via an in situ fabrication method inside the PDMS platform. For the smooth operation of the valve's leaflet, the elasticity and the shape of the leaflet and the lubrication between the leaflet and the channel surface are important. We used 4-hydroxybutyl acrylate (4-HBA) as an elastic and photopolymerizable leaflet material. We mixed the triton X-100 with the 4-HBA pre-polymer solution for the adequate lubrication of the leaflet. We constructed the micro-pumping system by combining two venous-like check valves with an oscillating polymeric diaphragm driven by pneumatic force, and measured the flow rate according to the change of pumping frequency. We also investigated the pump's feasibility as a delivery system of biocompatible materials by using mouse embryo fibroblast cells.  相似文献   

16.
Peng XY 《Lab on a chip》2011,11(1):132-138
A non-membrane micro surface tension pump (MISPU) was fabricated on a glass microchip by one-step glass etching. It needs no material other than glass and is driven by digital gas pressure. The MISPU can be seen working like a piston pump inside the glass microchip under a microscope. The design of the valves (MISVA) and pistons (MISTON) was based on the surface tension theory of the micro surface tension alveolus (MISTA). The digital gas pressure controls the moving gas-liquid interface to open or close the input and output MISVAs to refill or drive the MISTON for pumping a liquid. Without any moving parts, a MISPU is a kind of long-lasting micro pump for micro chips that does not lose its water pumping efficiency over a 20-day period. The volumetric pump output varied from 0 to 10 nl s(-1) when the pump cycle time decreased from 5 min to 15 s. The pump head pressure was 1 kPa.  相似文献   

17.
A two-dimensional capillary electrophoresis platform, combining isoelectric focusing (IEF) and capillary zone electrophoresis (CZE), was established on a microchip with the channel width and depth as 100 mum and 40 mum, respectively. With polyacrylamide as permanent coating, EOF in the microchannel, which could impair the separation, was decreased to 3.4x10(-9)m(2).V(-1).s(-1), about 1/10 of that obtained in the uncoated set-up. During the separation, peptides were first focused by IEF in the first dimensional channel, and then directly driven into the perpendicular channel by controlling the applied voltages, and separated by CZE. Effects of various experimental parameters, including the electric field strength, channel length, and injection frequency from the first to the second dimensional separation channel, were studied. Under optimized condition, the digests of BSA and proteins extracted from E. coli were separated, and a peak capacity of 540 was obtained, which was far greater than that obtained by each single dimensional separation. All these results showed the promise of multidimensional separation on a microchip for the high-throughput and high-resolution analysis of complex samples.  相似文献   

18.
超高速平板通道毛细管电泳   总被引:8,自引:0,他引:8  
陈洪  宋立国 《分析化学》1997,25(9):1098-1103
超高速平板通道毛细管电泳是90年代发展的一种秒级分离的新颖技术。应用现代微电子光刻技术将化学反应。进样、分离和检测等组合在数厘米玻片上。实现分离分析的小型化、集成化、一体化和自动化。  相似文献   

19.
Ro KW  Lim K  Kim H  Hahn JH 《Electrophoresis》2002,23(7-8):1129-1137
We have demonstrated that precolumn derivatization and capillary electrophoresis separation on a poly(dimethylsiloxane) (PDMS) microchip can be realized as efficient as those on glass microchips. In an optimized condition of micellar electrokinetic chromatography (MEKC), using 25 mM sodium borate buffer (pH 10.0) with 25 mM sodium dodecyl sulfate (SDS) and 5% v/v methanol, the electroosmotic flow in an oxidized PDMS microchip is stabilized within 3% for days. By employing a fluorometric derivatization with o-phthaldialdehyde (OPA) in an optimally designed reaction chamber, four most important biogenic amines occurring in foods, histamine, tyramine, putrescine, and tryptamine, are quantitatively determined in less than 1 min at the levels applicable to real samples. The migration behaviors of anionic OPA-derivatized biogenic amines under the MEKC conditions are analyzed, and it has been found that under our separation conditions, the electrophoretic mobility of the SDS micelles is significantly greater than those of the anions in the aqueous phase. The channel manifold in a PDMS substrate is fabricated using replica molding against a thick photoresist, SU-8, pattern generated by photolithography. The plate with the microchannel pattern is strongly, irreversibly bonded to another PDMS plate by using a new bonding technique, which employs surface oxidation by corona discharge generated from a cheap, handy source, Tesla coil.  相似文献   

20.
The use of CO(2) laser ablation for the patterning of capillary electrophoresis (CE) microchannels in poly(dimethylsiloxane)(PDMS) is described. Low-cost polymer devices were produced using a relatively inexpensive CO(2) laser system that facilitated rapid patterning and ablation of microchannels. Device designs were created using a commercially available software package. The effects of PDMS thickness, laser focusing, power, and speed on the resulting channel dimensions were investigated. Using optimized settings, the smallest channels that could be produced averaged 33 microm in depth (11.1% RSD, N= 6) and 110 microm in width (5.7% RSD, N= 6). The use of a PDMS substrate allowed reversible sealing of microchip components at room temperature without the need for cleanroom facilities. Using a layer of pre-cured polymer, devices were designed, ablated, and assembled within minutes. The final devices were used for microchip CE separation and detection of the fluorescently labeled neurotransmitters aspartate and glutamate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号