首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long‐chain‐branched polyethylene with a broad or bimodal molecular weight distribution was synthesized by ethylene homopolymerization via a novel nickel(II) α‐diimine complex of 2,3‐bis(2‐phenylphenyl)butane diimine nickel dibromide ({[2‐C6H4(C6H5)]? N?C? (CH3)C(CH3)?N? [2‐C6H4(C6H5)]}NiBr2) that possessed two stereoisomers in the presence of modified methylaluminoxane. The influences of the polymerization conditions, including the temperature and Al/Ni molar ratio, on the catalytic activity, molecular weight and molecular weight distribution, degree of branching, and branch length of polyethylene, were investigated. The resultant products were confirmed by gel permeation chromatography, gas chromatography/mass spectrometry, and 13C NMR characterization to be composed of higher molecular weight polyethylene with only isolated long‐branched chains (longer than six carbons) or with methyl pendant groups and oligomers of linear α‐olefins. The long‐chain‐branched polyethylene was formed mainly through the copolymerization of ethylene growing chains and macromonomers of α‐olefins. The presence of methyl pendant groups in the polyethylene main chain implied a 2,1‐insertion of the macromonomers into [Ni]? H active species. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1325–1330, 2005  相似文献   

2.
Aliphatic aldehydes have been condensed with cyanoacetic acid and the resulting olefin intermediates hydrogenated and then submitted to a Mannich-type reaction to produce α-alkylacrylonitriles with the alkyl groups ranging from C1 to C12. It was not necessary to isolate the intermediates when the reactions were carried out in acetonitrile solutions. The α-alkylacrylonitriles with C7 or higher alkyl groups in the chains would polymerize by radical initiation in emulsion to give polymers which were sticky, rubbery products and showed adhesive characteristics. Anionic initiation did not yield polymers with the α-alkylacrylonitriles containing high alkyl groups but did convert the C2 to C4 alkyl-substituted acrylonitriles to low molecular weight colored products. Some copolymers of α-alkylacrylonitriles with acrylonitrile were prepared in emulsion by radical initiation. The monomer ratios in these copolymers were determined by nuclear magnetic resonance spectra.  相似文献   

3.
By using standard bromination conditions, the insoluble 1,2,1,2-polypropadiene (formed by Ni(acac)2 or Co(acac)2 or 3, C3H4, (iBu)3Al catalysts) is transformed into a soluble bromopolypropadiene. Using this technique, determination of molecular weight becomes possible. It was found that the molecular weight increases with polymerization time until a steady value is reached. As the polymer yield continues to increase when a constant molecular weight has been reached, chain transfer must occur. The molecular weight of polybromopropadiene was independent of the concentrations of the catalyst components. From experiments with crosslinked polymers and from theoretical considerations, it was deduced that the low solubility of the original 1,2,1,2-polypropadiene is due to its high crystallinity.  相似文献   

4.
A simple mathematic model for the free radical polymerization of chain transfer monomers containing both polymerizable vinyl groups and telogen groups was proposed. The molecular architecture of the obtained polymer can be prognosticated according to the developed model, which was validated experimentally by homopolymerization of 4‐vinyl benzyl thiol (VBT) and its copolymerization with styrene. The chain transfer constant (CT) of telogen group in a chain transfer monomer is considered to play an important role to determine the architecture of obtained polymer according to the proposed model, either in homopolymerization or copolymerization. A highly branched polymer will be formed when the CT value is around unity, while a linear polymer with a certain extent of side chains will be obtained when the CT value is much bigger or smaller than unity. The CT of VBT was determined to be around 15 by using the developed model and 1H NMR monitored experiments. The obtained poly(VBT) and its copolymers were substantiated to be mainly consisted of linear main chain with side branching chains, which is in agreement with the anticipation from the developed model. The glass transition temperature, number average molecular weight, and its distribution of those obtained polymer were primarily investigated. This model is hopefully to be used as a strategy to select appropriate chain transfer monomers for preparing hyperbranched polymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1449–1459, 2008  相似文献   

5.
Several nitrones and one nitroso compound have been evaluated for their ability to control the molecular weight of polystyrene via the recently introduced radical polymerization method of enhanced spin capturing polymerization (ESCP). In this technique, molecular weight control is achieved (at ambient or slightly elevated temperatures) via the reaction of a growing radical chain with a nitrone forming a macronitroxide. These nitroxides subsequently react rapidly and irreversibly with propagating macroradicals forming polymer of a certain chain length, which depends on the nitrone concentration in the system. Via evaluation of the resulting number‐average molecular weight, Mn, at low conversions, the addition rate coefficient of the growing radicals onto the different nitrones is determined and activation energies are obtained. For the nitrones Ntert‐butyl‐α‐phenylnitrone (PBN), N‐methyl‐α‐phenylnitrone (PMN), and N‐methyl‐α‐(4‐bromo‐phenyl) nitrone (pB‐PMN), addition rate coefficients, kad,macro, in a similar magnitude to the styrene propagation rate coefficient, kp, are found with spin capturing constants CSC (with CSC = kad,macro/kp) ranging from 1 to 13 depending on the nitrone and on temperature. Activation energies between 23.6 and 27.7 kJ mol−1 were deduced for kad,macro, congruent with a decreasing CSC with increasing temperature. Almost constant Mn over up to high monomer to polymer conversions is found when CSC is close to unity, while increasing molecular weights can be observed when the CSC is large. From temperatures of 100 °C onward, reversible cleavage of the alkoxyamine group can occur, superimposing a reversible activation/deactivation mechanism onto the ESCP system. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1098–1107, 2009  相似文献   

6.
The glass transition temperature Tg of propylene glycol (PG) and poly(propylene glycols) (PPGs) of molecular weight up to 4000 has been measured by differential scanning calorimetry, and the activation energy and change in heat capacity ΔCp have been determined in the glass transition range. The activation energy increases with an increase in the molecular weight of the polymer, and ΔCp measured at a fixed heating rate decreases. The increase in Tg with molecular weight is remarkably more rapid for poly(propylene glycols) than for other polymers, and a limiting value of Tg is reached for a chain containing 20 monomer units. These results are discussed in terms of the Fox-Flory and the entropy theories. The calorimetric relaxation times are comparable with the extrapolated dielectric relaxation times. The initial increase of ΔCp from PG to PPG 200 is attributed to the decrease of H-bonding sites from 12 in 3 monomers to 4 on polymerization to PPG 200 and further decrease with increase in molecular weight to an increasingly large amplitude of the β-process at T < Tg.  相似文献   

7.
Bulk propylene polymerization in the presence of ansa-metallocenes with C 2 and C 1 symmetries has been studied. The catalytic activity, polymerization kinetics, and the molecular weight of polypropylene (PP) depend strongly on catalyst formation conditions. Mixtures of rac and meso isomers of metallocenes make it possible to rapidly produce a high-molecular-weight isotactic PP with high stereoregularity and mechanical characteristics and thus skip the stage of the isolation of pure rac isomer in the catalyst synthesis. The ability of triisobutylaluminum to serve as a cocatalyst is studied for ansa-metallocenes of C 1 symmetry. In this case, the molecular weight of PP is higher, indicating that organoaluminum compounds participate in chain termination reactions. An increase in the reaction temperature results in an increase in the stereoregularity and crystallinity of PP. Polypropylene synthesized using ansa-metallocenes of C 1 symmetry has good elastomeric properties.  相似文献   

8.
ESCA and contact-angle (H2O and CH2I2) measurements are used to follow changes in the surface of poly(ethylene terephthalate) film photooxidized (254 nm radiation in O2) for varying times, followed by aging for as many as three weeks or washing with water. Photooxidation occurs uniformly throughout the outermost 50 Å of the film to give a surface stoichiometry that corresponds to C10O6.6. Oxidation produces mainly carboxyl (acid) and alcohol/phenol groups, carbonyls form after extensive treatment. Low molecular weight products formed by chain scission and oxidation are removed by washing and diffuse into the bulk when aged. Oxidized products in higher molecular weight chains are not removed by washing, but can diffuse into the polymer bulk or reorient because of their chain mobility; therefore they are directed toward the polymer bulk rather than the surface. Extended photooxidation produces a stable oxidized surface more resistant to aging changes. The results are compared with those obtained for poly(ethylene terephthalate) film oxidized in an electrical discharge.  相似文献   

9.
Summary: In this communication, we report the first rheological study on the chain‐straightened Ni‐diimine poly(1‐hexene)s and investigate the unique effect of chain straightening on plateau modulus and entanglement molecular weight of this series of polymers. Two Ni‐diimine poly(1‐hexene) samples having different levels of chain straightening were prepared with a chain‐walking Ni‐diimine catalyst, (ArNC(An) C(An)NAr)NiBr2 (An = acenaphthene, Ar = 2,6‐(i‐Pr)2C6H3) at two different temperatures. Rheological analyses show that the chain‐straightened polymers exhibit significantly enhanced plateau modulus and reduced entanglement molecular weight compared to regular poly(1‐hexene)s by metallocene catalysis. Such an effect becomes more pronounced with an increase in the level of chain straightening.

Loss moduli G″(ω) versus reduced angular frequency in a linear, natural logarithm plot for the three polymers at the reference temperature of 100 °C.  相似文献   


10.
The chain transfer reaction by hydrogen in the initial stage of propene polymerization with MgCl2-supported Ziegler catalyst was studied by means of the stopped-flow polymerization. The yield and molecular weight of polypropene produced in the initial stage were not affected by hydrogen. Thus, the method was successfully applied to find the region in which hydrogen does not act as a chain transfer reagent. On the other hand, a chain transfer reaction proceeded in the initial stage of polymerization by using Zn(C2H5)2. Furthermore, when the catalyst was treated with Al(C2H5)3 before polymerization, the molecular weight of the produced polymer was decreased by using hydrogen, indicating that it acted as a chain transfer agent for the catalyst modified by pre-treatment.  相似文献   

11.
The structural and steric isomerism of propylene polymers has been estimated on the basis of solution properties as well as infrared and high-resolution nuclear magnetic resonance spectra. Three general types of polypropylenes were prepared: polymers prepared with the cationic catalytic system AlCl3–C2H5Cl, stereoblock polymers obtained by successive extraction from a commercial product and isotactic polymers of low molecular weight obtained by thermal degradation of a highly isotactic polymer followed by hydrogenation with Adam's catalyst in dioxane at 40°C. The characterization of all samples was accomplished by equilibrium ultracentrifugation, vapor-pressure osmometry, viscometry, and gel-permeation chromatography. It is found that the molecular chain of cationically prepared polymer is somewhat branched owing to structural isomerism during polymerization. Isoamyl acetate is found to be a theta solvent for stereo-block as well as for atactic and syndiotactic polymers; the theta temperature is determined as the temperature at which the light-scattering second virial coefficient A2 vanishes. A close correlation is found between the theta temperature and stereoisomerism. The absorbances of the 1154 and 974 cm?1 bands in the infrared spectra decrease with decreasing molecular weight; in addition to the mere existence of alternating CH2 and CH(CH3) groups in the polymer chain, rather long sequences of this type are required for the appearance of these bands. Changes in the absorption band at 997 cm?1 show that chains consisting of over ten isotactically connected monomer units can assume a helical conformation. From the high-resolution NMR spectra of different polypropylenes, including isotactic polymers of low molecular weight, it is found that in estimating the microstructure, account must be taken of the effects of stereoisomerism within tetrads of monomer units on the apparent widths of the methylene proton resonances. If substantial concentrations of several of the possible types of tetrads are present (i.e., if the tactic sequence lengths are quite short), then it is difficult to determine the relative amounts of tactic dyads accurately from the 100 Mcps methylene proton resonances.  相似文献   

12.
We report the complete ethanolysis of Kraft lignin over an α‐MoC1?x/AC catalyst in pure ethanol at 280 °C to give high‐value chemicals of low molecular weight with a maximum overall yield of the 25 most abundant liquid products (LP25) of 1.64 g per gram of lignin. The LP25 products consisted of C6–C10 esters, alcohols, arenes, phenols, and benzyl alcohols with an overall heating value of 36.5 MJ kg?1. C6 alcohols and C8 esters predominated and accounted for 82 wt % of the LP25 products. No oligomers or char were formed in the process. With our catalyst, ethanol is the only effective solvent for the reaction. Supercritical ethanol on its own degrades Kraft lignin into a mixture of small molecules and molecular fragments of intermediate size with molecular weights in the range 700–1400, differing in steps of 58 units, which is the weight of the branched‐chain linkage C3H6O in lignin. Hydrogen was found to have a negative effect on the formation of the low‐molecular‐weight products.  相似文献   

13.
Chain transfer to solvent has been investigated in the conventional radical polymerization and nitroxide‐mediated radical polymerization (NMP) of N‐isopropylacrylamide (NIPAM) in N,N‐dimethylformamide (DMF) at 120 °C. The extent of chain transfer to DMF can significantly impact the maximum attainable molecular weight in both systems. Based on a theoretical treatment, it has been shown that the same value of chain transfer to solvent constant, Ctr,S, in DMF at 120 °C (within experimental error) can account for experimental molecular weight data for both conventional radical polymerization and NMP under conditions where chain transfer to solvent is a significant end‐forming event. In NMP (and other controlled/living radical polymerization systems), chain transfer to solvent is manifested as the number‐average molecular weight (Mn) going through a maximum value with increasing monomer conversion. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
The normal concept is that the critical molecular weight (MC) is about twice as large as the entanglement molecular weight (Me). However, experimental data have shown considerable deviations from MC ≈ 2Me. Furthermore, a determination of MC requires samples with a wide range of molecular weights, including weights lower than MC and higher than MC. In this article, we suggest a simple method for determining MC from the loss moduli of nearly monodisperse linear polymers with M ? MC. We consider two characteristic relaxation times, which correspond to the local maximum and minimum of the loss modulus. MC is determined from the intersection of two phenomenological relaxation times as a function of the molecular weight. The method precisely agrees with MC ≈ 2Me, which is not shown by conventional methods. Moreover, our method provides a determination of relaxation time τe, at which chain segments first feel the constraints imposed by the conceptual tube, without the measurement of the tube diameter and the monomeric friction coefficient, which may be determined by complicated procedures with a lot of data. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2724–2729, 2004  相似文献   

15.
This investigation studied the solution polymerization of ethylene in Isopar E in a semibatch reactor using CGC‐Ti as catalyst and methylalumoxane (MAO) and tris(pentaflourophenyl)borane [B(C6F5)3] as cocatalysts. The effects of cocatalyst type and amount on the chain microstructure were investigated. 13C NMR and gel permeation chromatography were used to determine the long‐chain branching (LCB) content and molecular weight distribution (MWD), respectively, of the samples. It was observed that higher concentrations of MAO increased the LCB content and decreased the molecular weight of the polymer. On the other hand, increasing the amount of B(C6F5)3 lowered the LCB content, increased the molecular weight, and broadened MWD significantly. We believe that this approach can be used as an efficient way to control the microstructure of polyolefins made with these catalytic systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3055–3061, 2004  相似文献   

16.
GLC analysis of the products obtained by pyrolysis of cannabidiol in air at 700° revealed the formation of several components, which are not only the result of a mere cracking process. A peak with a retention time corresponding to the one of Δ1(2)tetrahydrocannabinol has been analysed by mass spectrometry. Next to at least two components with a molecular weight of 314 (C21H30O2), possibly including a small amount of Δ1(2)tetrahydrocannabinol, the major component was shown to have the molecular formula C21H30O3. The structure of this oxidation product of cannabidiol has been established as the decarboxylated product of the naturally occurring cannabiëlsoic acid A by the identity of its mass spectrometrical fragmentation pattern to that of one of the two decarboxylated cannabiëlsoic acid A C1-stereoisomers, obtained by photochemical oxidation of cannabidiolic acid.  相似文献   

17.
Randomly copolymerized poly(carbonate) glycols were employed as starting materials for the synthesis of polyurethane elastomers (PUEs). The poly(carbonate) glycols had hexamethylene (C6) and tetramethylene (C4) units between carbonate groups in various composition ratios (C4/C6 = 0/100, 50/50, 70/30, and 90/10), and the number‐average molecular weights of these poly(carbonate) glycols were 1000 and 2000. The PUEs were synthesized with these poly(carbonate) glycols, 4,4′‐diphenylmethane diisocyanate, and 1,4‐butanediol by a prepolymer method. Differential scanning calorimetry measurements revealed that the difference between the glass‐transition temperature of the soft segment in the PUEs and the glass‐transition temperature of the original glycol polymer decreased and the melting point of the hard‐segment domain increased with an increasing C4 composition ratio. The microphase separation of the poly(carbonate) glycol‐based PUEs likely became stronger with an increasing C4 composition ratio. Young's modulus of these PUEs increased with an increasing C4 composition ratio. This was due to increases in the degree of microphase separation and stiffness of the soft segment with an increase in the C4 composition ratio. The molecular weight of poly(carbonate) glycol also influenced the microphase‐separated structure and mechanical properties of the PUEs. The addition of different methylene chain units to poly(carbonate) glycol was quite effective in controlling the microphase‐separated structure and mechanical properties of the PUEs. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4448–4458, 2004  相似文献   

18.
The electron impact mass spectrometry of straight chain alkanes C8H18-C40H82, squalane, methylstearate, 1-chlorohexadecane, 1-bromohexadecane, and dioctylphthalate was studied by sampling them with supersonic molecular beams. A fly-through Brink-type electron impact ion source was used, utilizing a vacuum background ion filtration technique based on differences between the kinetic energy of the supersonic beam species and that of thermal molecules. The 70-eV electron impact mass spectra of all the alkanes were characterized by a pronounced or dominant molecular weight peak together with all the fragment ions normally exhibited by the standard thermal 70-eV EI mass spectra. In contrast, the NIST library of most of these molecules did not show any molecular weight peak. By eliminating tile intramolecular thermal vibrational energy we gained control over the degree of molecular ion fragmentation by the electron energy. At an electron energy of 18 eV the molecular ion dissociation was further reduced considerably, with only a small absolute reduction in the peak height by less than a factor of 2. The effect of vibrational cooling increased with the molecular size and number of atoms. Pronounced differences were observed between the mass spectra of the straight chain triacontane and its branched isomer squalane. Similar mass spectra of octacosane (C28H58) achieved with 70-eV EI in a supersonic molecular beam were obtained with a magnetic sector mass spectrometer by using an electron energy of 14 eV and an ion source temperature of 150 °C. However, this ion source temperature precluded the gas chromatography-mass spectrometry (GC-MS) of octacosane. The GC-MS of alkanes was studied with an ion trap gas chromatograph-mass spectrometer at an ion source temperature of 230 °C. Thermal peak tailing was observed for C20H42 and heavier alkanes, whereas for C28H58 and heavier alkanes the severe peak tailing made quantitative GC-MS impractical. In contrast, no peak tailing existed even with C40H82 for GC-MS in supersonic molecular beams. The minimum detected amount of eicosane (C20, H42) was shown to be 60 fg. This was demonstrated by using single ion monitoring with the quadrupole mass analyzer tuned to the molecular weight peak of 282 u. The coupling of electron impact mass spectrometry in supersonic molecular beams with hyperthermal surface ionization and a fast GC-MS inlet is briefly discussed.  相似文献   

19.
Ethylisobutylaluminoxane (EBAO) and its analogues were synthesized by a reaction between an triethylaluminum (Et3Al)/triisobutylaluminum (i‐Bu3Al) mixture and 4‐fluorobenzeneboronic acid, phenylboronic acid, or n‐butaneboronic acid and subsequent hydrolysis with water. They were used as cocatalysts in ethylene polymerization catalyzed by an iron complex {[(ArN?C(Me))2C5H3N]FeCl2, where Ar is 2,6‐diisopropylphenyl}. Polyethylene with a high molecular weight and a narrow molecular weight distribution was prepared with modified EBAOs, and the performance of the iron complex at high polymerization temperatures was greatly improved. The activators for the iron complex also affected the polymerization activity and the molecular weight of the resultant polyethylene. It was suggested that the stereo and electronic effects of the substitute groups of aluminoxane contributed to the improved performance of the new activators. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1093–1099, 2004  相似文献   

20.
Cationic bulk polymerization of L ,L‐ lactide (LA) initiated by trifluromethanesulfonic acid [triflic acid (TfA)] has been studied. At temperatures 120–160 °C, polymerization proceeded to high conversion (>90% within ~8 h) giving polymers with Mn ~ 2 × 104 and relatively high dispersity. Thermogravimetric analysis of resulting polylactide (PLA) indicated that its thermal stability was considerably higher than the thermal stability of linear PLA of comparable molecular weight obtained with ROH/Sn(Oct)2 initiating system. Also hydrolytic stability of cationically prepared PLA was significantly higher than hydrolytic stability of linear PLA. Because thermal or hydrolytic degradation of PLA starting from end‐groups is considerably faster than random chain scission, both thermal and hydrolytic stability depend on molecular weight of the polymer. High thermal and hydrolytic stability, in spite of moderate molecular weight of cationically prepared PLA, indicate that the fraction of end‐groups is considerably lower than in linear PLA of comparable molecular weight. According to proposed mechanism of cationic LA polymerization growing macromolecules are fitted with terminal ? OH and ? C(O)OSO2CF3 end‐groups. The presence of those groups allows efficient end‐to‐end cyclization. Cyclic nature of resulting PLA explains its higher thermal and hydrolytic stability as compared with linear PLA. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2650–2658, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号