首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Consider a smooth solution of utt ? Δu + q(x) ¦ u ¦p?1u = 0 x ? R3, q ? 0 and is C1, and 1 < p < 5. Assume that the initial data decay sufficiently rapidly at infinity, q(x) ? a exp(?b ¦ x ¦c), a, b > 0, c > 1, and for simplicity, qr ? 0. Then the local energy decays faster than exponentially.  相似文献   

2.
Nonlinear Neumann problems on riemannian manifolds. Let (M, g) be a C compact riemannian manifold of dimension n ? 2 whose boundary B is an (n ? 1)-dimensional submanifold and let M = M?B be the interior of M. Study of Neumann problems of the form: Δφ +?(φ, x) = 0 in M, (dn) + g(φ, y) = 0 on B, where, for every (t, x, y) ? R × M × B, ¦?(t, x)¦ and ¦g(t, y)¦ are bounded by C(1 + ¦t¦a) or C exp(¦t¦a). Application to the determination of a conformal metric for which the scalar curvature of M and the mean curvature of B take prescribed values.  相似文献   

3.
For an open set Ω ? RN, 1 ? p ? ∞ and λ ∈ R+, let W?pλ(Ω) denote the Sobolev-Slobodetzkij space obtained by completing C0(Ω) in the usual Sobolev-Slobodetzkij norm (cf. A. Pietsch, “r-nukleare Sobol. Einbett. Oper., Ellipt. Dgln. II,” Akademie-Verlag, Berlin, 1971, pp. 203–215). Choose a Banach ideal of operators U, 1 ? p, q ? ∞ and a quasibounded domain Ω ? RN. Theorem 1 of the note gives sufficient conditions on λ such that the Sobolev-imbedding map W?pλ(Ω) λ Lq(Ω) exists and belongs to the given Banach ideal U: Assume the quasibounded domain fulfills condition Ckl for some l > 0 and 1 ? k ? N. Roughly this means that the distance of any x ? Ω to the boundary ?Ω tends to zero as O(¦ x ¦?l) for ¦ x ¦ → ∞, and that the boundary consists of sufficiently smooth ?(N ? k)-dimensional manifolds. Take, furthermore, 1 ? p, q ? ∞, p > k. Then, if μ, ν are real positive numbers with λ = μ + v ∈ N, μ > λ S(U; p,q:N) and v > N/l · λD(U;p,q), one has that W?pλ(Ω) λ Lq(Ω) belongs to the Banach ideal U. Here λD(U;p,q;N)∈R+ and λS(U;p,q;N)∈R+ are the D-limit order and S-limit order of the ideal U, introduced by Pietsch in the above mentioned paper. These limit orders may be computed by estimating the ideal norms of the identity mappings lpnlqn for n → ∞. Theorem 1 in this way generalizes results of R. A. Adams and C. Clark for the ideals of compact resp. Hilbert-Schmidt operators (p = q = 2) as well as results on imbeddings over bounded domains.Similar results over general unbounded domains are indicated for weighted Sobolev spaces.As an application, in Theorem 2 an estimate is given for the rate of growth of the eigenvalues of formally selfadjoint, uniformly strongly elliptic differential operators with Dirichlet boundary conditions in L2(Ω), where Ω fulfills condition C1l.For an open set Ω in RN, let W?pλ(Ω) denote the Sobolev-Slobodetzkij space obtained by completing C0(Ω) in the usual Sobolev-Slobodetzkij norm, see below. Taking a fixed Banach ideal of operators and 1 ? p, q ? ∞, we consider quasibounded domains Ω in RN and give sufficient conditions on λ such that the Sobolev imbedding operator W?pλ(Ω) λ Lq(Ω) exists and belongs to the Banach ideal. This generalizes results of C. Clark and R. A. Adams for compact, respectively, Hilbert-Schmidt operators (p = q = 2) to general Banach ideals of operators, as well as results on imbeddings over bounded domains. Similar results over general unbounded domains may be proved for weighted Sobolev spaces. As an application, we give an estimate for the rate of growth of the eigenvalues of formally selfadjoint, uniformly strongly elliptic differential operators with Dirichlet boundary conditions in L2(Ω), where Ω is a quasibounded open set in RN.  相似文献   

4.
For a class of potentials including the Coulomb potential q = μr?1 with ¦ μ ¦ < 1 (1) (i.e., atomic numbers Z ? 137), the virial theorem (u, α · pu) = (u, r(?q?r)u) is shown to hold, u being an eigenfunction of the operator
Hu = TU : = (α · p + β + q)u
,
D(H) = {u ¦ u ∈ [Hloc1(R+3)]4, r?12u, TU ∈ [L2(R)3]4}
(R+3 := R?{0}). The result implies in particular that H with (1) does not have any eigenvalues embedded in the continuum. The proof uses a scale transformation.  相似文献   

5.
Let u(x, t) be the solution of utt ? Δxu = 0 with initial conditions u(x, 0) = g(x) and ut(x, 0) = ?;(x). Consider the linear operator T: ?; → u(x, t). (Here g = 0.) We prove for t fixed the following result. Theorem 1: T is bounded in Lp if and only if ¦ p?1 ? 2?1 ¦ = (n ? 1)?1and ∥ T?; ∥LαP = ∥?;∥LPwith α = 1 ?(n ? 1) ¦ p?1 ? 2?1 ¦. Theorem 2: If the coefficients are variables in C and constant outside of some compact set we get: (a) If n = 2k the result holds for ¦ p?1 ? 2?1 ¦ < (n ? 1)?1. (b) If n = 2k ? 1, the result is valid for ¦ p?1 ? 2?1 ¦ ? (n ? 1). This result are sharp in the sense that for p such that ¦ p?1 ? 2?1 ¦ > (n ? 1)?1 we prove the existence of ?; ? LP in such a way that T?; ? LP. Several applications are given, one of them is to the study of the Klein-Gordon equation, the other to the completion of the study of the family of multipliers m(ξ) = ψ(ξ) ei¦ξ¦ ¦ ξ ¦ ?b and finally we get that the convolution against the kernel K(x) = ?(x)(1 ? ¦ x ¦)?1 is bounded in H1.  相似文献   

6.
In a recent paper [3] the authors derived maximum principles which involved u(x) and q = ¦grad, where u(x) is a classical solution of an alliptic differential equation of the form (g(q2)u,i),i + ?(u) ?(q2) = 0. In this paper these results are extended to the more general case in which g = g(u, q2) and ?(u) ?(q2) is replaced by h(u, q2).  相似文献   

7.
Nonlinear partial differential operators G: W1,p(Ω) → Lq(Ω) (1 ? p, q ∞) having the form G(u) = g(u, D1u,…, DNu), with g?C(R × RN), are here shown to be precisely those operators which are local, (locally) uniformly continuous on, W1,∞(Ω), and (roughly speaking) translation invariant. It is also shown that all such partial differential operators are necessarily bounded and continuous with respect to the norm topologies of W1,p(Ω) and Lq(Ω).  相似文献   

8.
New and more elementary proofs are given of two results due to W. Littman: (1) Let n ? 2, p ? 2n(n ? 1). The estimate ∫∫ (¦▽u¦p + ¦ut¦p) dx dt ? C ∫∫ ¦□u¦p dx dt cannot hold for all u?C0(Q), Q a cube in Rn × R, some constant C. (2) Let n ? 2, p ≠ 2. The estimate ∫ (¦▽(t)¦p + ¦ut(t)¦p) dx ? C(t) ∫ (¦▽u(0)¦p + ¦ut(0)¦p) dx cannot hold for all C solutions of the wave equation □u = 0 in Rn x R; all t ?R; some function C: RR.  相似文献   

9.
We provide conditions on a finite measure μ on Rn which insure that the imbeddings Wk, p(Rndμ)?Lp(Rndμ) are compact, where 1 ? p < ∞ and k is a positive integer. The conditions involve uniform decay of the measure μ for large ¦x¦ and are satisfied, for example, by dμ = e?¦x¦αdx, where α > 1.  相似文献   

10.
It is shown that the method of Chernoff developed in the preceding paper can be modified to prove the essential self-adjointness on C0(Rm) of all positive powers of the Schrödinger operator T = ? Δ + q if q real and in C(Rm) and if T ? ?a ? b ¦ x ¦2on C0(Rm).  相似文献   

11.
Let p, q be arbitrary parameter sets, and let H be a Hilbert space. We say that x = (xi)i?q, xi ? H, is a bounded operator-forming vector (?HFq) if the Gram matrixx, x〉 = [(xi, xj)]i?q,j?q is the matrix of a bounded (necessarily ≥ 0) operator on lq2, the Hilbert space of square-summable complex-valued functions on q. Let A be p × q, i.e., let A be a linear operator from lq2 to lp2. Then exists a linear operator ǎ from (the Banach space) HFq to HFp on D(A) = {x:x ? HFq, A〈x, x〉12 is p × q bounded on lq2} such that y = ǎx satisfies yj?σ(x) = {space spanned by the xi}, 〈y, x〉 = Ax, x〉 and 〈y, y〉 = A〈x, x〉12(A〈x, x〉12)1. This is a generalization of our earlier [J. Multivariate Anal.4 (1974), 166–209; 6 (1976), 538–571] results for the case of a spectral measure concentrated on one point. We apply these tools to investigate q-variate wide-sense Markov processes.  相似文献   

12.
If M is a von Neumann algebra in H, each faithful weight ψ on M′ defines an operator-valued weight ψ?1 of L(H) on M. For each weight ? on M the positive unbounded operator d? = ? ° ψ?1 satisfies all the usual properties of a Radon-Nikodym derivative.  相似文献   

13.
If Ω denotes an open subset of Rn (n = 1, 2,…), we define an algebra g (Ω) which contains the space D′(Ω) of all distributions on Ω and such that C(Ω) is a subalgebra of G (Ω). The elements of G (Ω) may be considered as “generalized functions” on Ω and they admit partial derivatives at any order that generalize exactly the derivation of distributions. The multiplication in G(Ω) gives therefore a natural meaning to any product of distributions, and we explain how these results agree with remarks of Schwartz on difficulties concerning a multiplication of distributions. More generally if q = 1, 2,…, and ?∈OM(R2q)—a classical Schwartz notation—for any G1,…,GqG(σ), we define naturally an element ?G1,…,Gq∈G(σ). These results are applied to some differential equations and extended to the vector valued case, which allows the multiplication of vector valued distributions of physics.  相似文献   

14.
Let ψ1, …,ψN be orthonormal functions in Rd and let ui = (?Δ)?12ψi, or ui = (?Δ + 1)?12ψi, and let p(x) = ∑¦ui(x)¦2. Lp bounds are proved for p, an example being ∥p∥p ? AdN1pfor d ? 3, with p = d(d ? 2)?1. The unusual feature of these bounds is that the orthogonality of the ψi, yields a factor N1p instead of N, as would be the case without orthogonality. These bounds prove some conjectures of Battle and Federbush (a Phase Cell Cluster Expansion for Euclidean Field Theories, I, 1982, preprint) and of Conlon (Comm. Math. Phys., in press).  相似文献   

15.
It is well known that every weak solution (with boundary values 0) of a semilinear equation Au + ?(x, u) = g is a regular solution if ? fulfils the growth condition (1) ¦?(x, u)¦? c ¦u¦(n + 2m)(n ? 2m) ? ?. Here 2m is the order of A. In this paper we weaken this condition to c ¦u ¦(n + 2m)(n ? 2m) + 1 ? ?(x, u)u ? ?c ¦u ?(n + 2m)(n ? 2m) + 1 ? ?. This requires a technique completely different from that which may be applied in case (1).  相似文献   

16.
A construction is given for difference sets in certain non-cyclic groups with the parameters v = qs+1{[(qs+1 ? 1)(q ? 1)] + 1}, k = qs(qs+1 ? 1)(q ? 1), λ = qs(qs ? 1)(q ? 1), n = q2s for every prime power q and every positive integer s. If qs is odd, the construction yields at least 12(qs + 1) inequivalent difference sets in the same group. For q = 5, s = 2 a difference set is obtained with the parameters (v, k, λ, n) = (4000, 775, 150, 625), which has minus one as a multiplier.  相似文献   

17.
Let Lu be the integral operator defined by (Lk?)(x, y) = ∝ s ∝ ?(x′, y′)(eik??) dx′ dy′, (x, y) ? S where S is the interior of a smooth, closed Jordan curve in the plane, k is a complex number with Re k ? 0, Im k ? 0, and ?2 = (x ?x′)2 + (y ? y′)2. We define q(x, y) = [dist((x, y), ?S)]12, (x, y) ? S; L2(q, S) = {? : ∝ s ∝ ¦ ?(x, y)¦2 q(x, y) dx dy < ∞}; W21(q, S) = {? : ? ? L2(q, S), ???x, ?f?y ? L2(q, S)}, where in the definition of W21(q, S) the derivatives are taken in the sense of distributions. We prove that Lk is a continuous 1-l mapping of L2(q, S) onto W21(q, S).  相似文献   

18.
The regular representation of O(n, N) acting on L2(O(n, N)O(n, N ? 1)) is decomposed into a direct integral of irreducible representations. The homogeneous space O(n, N)O(n, N ? 1) is realized as the Hyperboloid H = {(x, t) ? Rn + N : ¦ t ¦2 ? ¦ x ¦2 = 1}. The problem is essentially equivalent to finding the spectral resolution of a certain self-adjoint invariant differential operator □h on H, which is the tangential part of the operator □ = Δx ? Δt on Rn + N. The spectrum of □h contains a discrete part (except when N = 1) with eigenfunctions generated by restricting to H solutions of □u = 0 which vanish in the region ¦ t ¦ < ¦ x ¦, and a continuous part H?. As a representation of O(n, N), H?H? is unitarily equivalent to the regular representation on L2 of the cone {(x, t) : ¦ x ¦2 = ¦ t ¦2}, and the intertwining operator is obtained by solving the equation □u = 0 with given boundary values on the cone. Explicit formulas are given for the spectral decomposition. The special case n = N = 2 gives the Plancherel formula for SL(2, R).  相似文献   

19.
On a compact Kähler manifold of complex dimension m ? 2, let us consider the change of Kähler metric g′λ\?gm = gλ\?gm + ?λ\?gmφ. Let F?C(V × R) be a function everywhere > 0 and v a real number ≠ 0. When 0 < C?1 ? F(x, t) ? C(¦t¦a + 1) for all (x, t) ?V × ] ?∞, t0], where C and t0 are constants and 1 ? a < m(m ? 1), one exhibits a function φ?C (V) such that ¦g′∥g¦?1 = eν\?gfF(x, φ ? \?gf) (¦g¦ and ¦g′¦ the determinants of the metrics g and g′, \?gf = (mes V)?1 ∝ φ dV).  相似文献   

20.
The composition of two Calderón-Zygmund singular integral operators is given explicitly in terms of the kernels of the operators. For φ?L1(Rn) and ε = 0 or 1 and ∝ φ = 0 if ε = 0, let Ker(φ) be the unique function on Rn + 1 homogeneous of degree ?n ? 1 of parity ε that equals φ on the hypersurface x0 = 1. Let Sing(φ, ε) denote the singular integral operator Sing(φ, ε)f(x0, x) = limδ → 0 ∝∝¦y0¦ ? δf(x0 ? y0, x ? y), Ker(φ)(y0, y) dy0 dy, which exists under suitable growth conditions on ? and φ. Then Sing(φ, ε1) Sing(ψ, ε2)f = ?2π2(∝ φ)(∝ ψ)f + Sing(A, ε1, + ε2)f, where
A(x)=limδ→0∫∫δ?|λ|?δ?1|λ+1|?1+?2n|λ|?2θ(x+λ(x?y))ψ(y)dλdy
(with notation ¦t¦0a = ¦t¦aand ¦t¦1a = ¦t¦asgn t). This result is used to show that the mapping ψA is a classical pseudo-differential operator of order zero if φ is smooth, with top-order symbol
ω0(x,?)=?πiθ(?)∫θ(x?y)sgn y·?dy if ?1=1
,
=?2θ(?)∫θ(x?y)log|y·?|dy if ?1=0
where θ(ξ) is a cut-off function. These results are generalized to singular integrals with mixed homogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号