首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infrared spectra of N2O crystals containing dilute to isotopic impurities are reported. Information on the second moments and other properties of the vibrational exciton bands has been determined from an analysis of the impurity modes, the LOTO splittings, and a comparison of the transition dipole moments of N2O with those of CO2. The effect of the random sense of the molecules on the spectra is discussed.  相似文献   

2.
The reaction of N2O with CO, catalyzed by Fe+(C6H6) and producing N2 and CO2, has been investigated at the UB3LYP/6-311+G(d) level. The computation results revealed that the reaction of Fe+(C6H6), N2O and CO, is an O-atom abstraction mechanism. For the reaction channels, the geometries and the vibrational frequencies of all species have been calculated and the frequency modes analysis also have been given to elucidate the reaction mechanism. On the basis for geometry optimizations, the thermodynamic data of these reactions channels have been calculated using the statistical theory at 295.15 K and pressure of 0.35 Torr. Using Eyring transition state theory with Wigner correction, the activation thermodynamic data, rate constant and frequency factors for the these reaction channels also have been given. The results showed that CO and N2O do not react without catalyst and Fe+(C6H6) can excellently mediate the reaction of N2O and CO.  相似文献   

3.
The far-from-resonance transfers and the de-excitation processes in CO2-NO and N2O-NO systems have been studied by measuring fluorescence decay rate constants of CO2 or N2O excited to the (00°1) level by laser radiation. The diagrams giving the variations of these rate constants versus the molar fraction of CO2 or N2O have been set out. From these diagrams, the relative importance of the V-V transfer and V-T de-excitation rate constants is discussed. The transfer rate constants have been calculated from a semiclassical theory in which the interaction potential is a sum of four atom-atom Morse potentials. The disagreement observed between calculated and experimental values probably results from the attractive multipolar forces which the theory does not take into account.  相似文献   

4.
High-resolution infrared predissociation spectra have been measured for dilute mixtures of CO2 and N2O in helium. Rotational fine structure is clearly resolved for both (CO2)2 and (N2O)2, the linewidths being instrument-limited. This establishes that predissociation lifetimes are longer than approximately 50 ns.  相似文献   

5.
The gas adsorption and CO2 separation properties of 9 different metal-organic frameworks (MOFs) have been modelled with grand canonical Monte Carlo (GCMC) adsorption simulations. Adsorption of both pure gases and gas mixtures has been studied. MOFs are shown to have high selectivity for polar gases such as CO2 over non-polar gases such as N2. Selectivity of one polar gas from another can be altered by changing the polarity of the framework, pore geometry and also temperature. Often features that lead to good selectivity of CO2 from N2 also lead to poor selectivity of CO2 from H2O.  相似文献   

6.
The solubility of CO2 and N2O in olive oil has been measured at temperatures of about 298, 310, and 323 K with a gravimetric microbalance under pressures up to 2 MPa. The molecular weight of olive oil has been analyzed and found to be about 882 g mol−1 as a mixed oil compound. The observed solubility data have been correlated with a cubic equation of state (EOS) model. N2O has a larger solubility than CO2 in olive oil based on either the mole or mass fraction. The present results clarify some ambiguities from the previous N2O solubility data in the literature.  相似文献   

7.
The C 1s and N 1s main lines in the photoelectron spectra of CO, CO2, CH4, C2H2, C2H4, C2H6, N2, and N2O have been measured with high resolution in the threshold region, revealing in each case the extent of the rich vibrational fine structure. Using a simple line shape analysis which allows for the effect of post-collision interaction, the vibrational energies and approximate lifetimes of the core-excited ions are determined. The relative intensities of the vibrational lines change dramatically with photon energy due to the influence of shape resonances and double excitations.  相似文献   

8.
Catalytic decomposition of nitrous oxide (N2O) is one of the most efficient methods for the removal of N2O which is of high greenhouse potential and ozone-depleting property. Recent progress in the decomposition of N2O has been reviewed with the focus on noble meal and metal oxide catalysts. The influence factors, such as catalyst support, preparation method, alkali metal additives and the reaction conditions (including O2, H2O, SO2, NO and CO2), on the performance of deN2O catalysts have been discussed. Finally, future research direction for the catalytic decomposition of N2O is proposed.  相似文献   

9.
Rapid, selective collision-dependent excitation of N2O following pumping of SF6 with a CO2 laser is reported. The N2O fluorescence rise depends on the pressure of each component and is dominated by the SF6-dependent contribution of 2290 ms?1 Torr?1. The subsequent fall is governed by V→V processes among SF6 vibrational modes.  相似文献   

10.
Herein, we have designed and synthesized two heteroatom (N, O) rich covalent organic frameworks (COF), PD-COF and TF-COF , respectively, to demonstrate their relative effect on CO2 adsorption capacity and also CO2/N2 selectivity. Compared to the non-fluorinated PD-COF (BET surface area 805 m2 g−1, total pore volume 0.3647 ccg−1), a decrease in BET surface area and also pore volume have been observed for fluorinated TF-COF due to the incorporation of fluorine to the porous framework (BET surface area 451 m2 g−1, total pore volume 0.2978 ccg−1). This fact leads to an enormous decrease in the CO2 adsorption capacity and CO2/N2 selectivity of TF-COF , though it shows stronger affinity towards CO2 with a Qst of 37.76 KJ/mol. The more CO2 adsorption capacity by PD-COF can be attributed to the large specific surface area with considerable amount of micropore volume compared to the TF-COF . Further, PD-COF exhibited CO2/N2 selectivity of 16.8, higher than that of TF-COF (CO2/N2 selectivity 13.4).  相似文献   

11.
Summary Negative ion mass spectra for 3 aliphatic and 4 aromatic isocyanates have been obtained by low pressure chemical ionization, using CH4, CO2 and N2O as reagent gases. All compounds furnished intense anions at m/z 42. With CH4, quasi-molecular anions were observed at m/z M+1 for aliphatic and m/z M+1 and M–1 for aromatic isocyanates. With N2O, anionic substitution products at m/z M+15 and M+30 were observed, and with CO2 and N2O, peaks at m/z M–12 could be detected for all aromatic isocyanates. Studies with 13CO2 and C18O2 as reagent gases showed that the anions at m/z M–12 and M+15 correspond to [M–CO+O] and [M–H+O], respectively.
Negativionen-Massenspektrometrie mit chemischer Ionisierung von einigen Isocyanaten
Zusammenfassung Die Negativionen-Massenspektren von 3 aliphatischen und 4 aromatischen Isocyanaten wurden mittels chemischer Ionisation bei tiefem Quellendruck aufgenommen, und zwar mit den Reagensgasen CH4, CO4 und N2O. Alle Verbindungen lieferten intensive Anionen mit m/z 42. Mit CH4 erhielten wir die quasi-molekularen Anionen M+1 für aliphatische sowie M+1 und M–1 für aromatische Isocyanate. Das Reagens N2O ergab die anionischen Substitutionsprodukte M+15 und M+30. Sowohl CO2 als auch N2O führten mit aromatischen Isocyanaten zur Bildung von M–12 Anionen. Versuche mit 13CO2 und mit C18O2 als Reagensgase zeigten, daß die Anionen M–12 und M+15 den Ionen [M–CO+O] und [M–H+O] entsprechen.
  相似文献   

12.
Combined measurements of vibrational distributions (Nυ) of CO and CO2 yields (β) in HeCO discharges have been performed at different residence times in radiofrequency discharges. The experimental results on Nυ have been obtained by IR emission spectroscopy and on β by gas-chromatographic and mass-spectrometric techniques. A theoretical model including the most important relaxation channels of the vibrational energy has been set up and coupled to the plasma chemistry describing the rate of formation of species such as CO2, C, and O. Theoretical and experimental results are in good agreement, emphasizing the role of a vibrational mechanism in dissociating CO in HeCO mixtures.  相似文献   

13.
Optical gain and laser oscillation has been achieved in N2O through selective excitation of the (001) state by vibrational energy transfer from CO2. The CO2 is produced by the flash photolysis initiated chemical reaction: O + CS → CO2 + S.  相似文献   

14.
Raman spectra of poly methyl methacrylate (PMMA) in contact with compressed CO2 were measured, to investigate effects of CO2 sorption on structure of the PMMA chain. The solubility and diffusivity of CO2 in PMMA were estimated from temporal variations of intensities of CO2 peaks. The PMMA structure was analyzed from temporal variations of vibrational energies of PMMA peaks. The results show that the vibration energies of C H stretching modes of PMMA increase with CO2 sorption, whereas those for skeletal vibration modes decrease. These energy shifts are attributed to elongational deformation of PMMA. The PMMA structure is deformed with stretching of the chains as a bundle. From energy shifts of the CO2 peaks, the size of the CO2 accommodated space between the bundles is estimated to be 1.6–1.9 nm. Furthermore, it was observed that the vibrational energies of the PMMA modes in foamed glassy PMMA differ from the values in glassy PMMA without foams. This result suggests that the local structure of the PMMA chain changes with the process of the CO2 sorption and/or foaming. The local structure of the PMMA chain might be one of the dominant factors governing the properties of cellular materials. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 831–842, 2008  相似文献   

15.
The behavior of molecules in different atmospheric microwave-induced plasmas (MIPs) has been studied by means of optical emission spectroscopy. This is in order to obtain more insight into molecular processes in plasmas and to investigate the feasibility of emission spectroscopy for the analysis of molecular compounds in gases, e.g. flue gases. Various molecular species (i.e. N2, CO2, H2O, SF6 and SO2) have been introduced into discharges in argon or in molecular gases such as carbon dioxide or nitrogen. The plasmas were created and sustained by a guide-surfatron or a torch in the power range of 150 W to 2 kW. Only nitrogen sometimes yielded observable emission from the non-dissociated molecule (first and second positive system). Using other molecular gases, only dissociation and association products were observed (i.e. atomic species and diatomic molecules such as CN, C2, CO, OH, NH and N2+). The intensities of these products have been studied as a function of the concentration of introduced molecules, the position in the plasma and the composition of the plasma environment. Since in most cases the same diatomic association products are seen, observed associated molecules can only to some extend be related to the molecules originally present in the plasma gas. Therefore, it will be difficult to use atmospheric microwave discharges for the analysis of gas mixtures under the experimental conditions studied.  相似文献   

16.
High resolution photoelectron spectra have been recorded from N2 and CO with a fully calibrated energy analyzer at both the 736 and 744 A Nel lines. Observation of electrons from transitions to the υ = 11 level of the CO+ X2Σ+ ground state is reported for the first time. Relative intensities of all vibrational peaks appearing in each spectrum are given.  相似文献   

17.
Single-atom M−N2 (M=Fe, Co, Ni) catalysts exhibit high activity for CO2 reduction reaction (CO2RR). However, the CO2RR mechanism and the origin of activity at the single-atom sites remain unclear, which hinders the development of single-atom M−N2 catalysts. Here, using density functional theory calculations, we reveal intermediates-induced CO2RR activity at the single-atom M−N2 sites. At the M−N2 sites, the asymmetric *O*CO configuration tends to split into *CO and *OH intermediates. Intermediates become part of the active moiety to form M−(CO)N2 or M-(OH)N2 sites, which optimizes the adsorption of intermediates on the M sites. The maximum free energy differences along the optimal CO2RR pathway are 0.30, 0.54, and 0.28 eV for Fe−(OH)N2, Co−(CO)N2, and Ni−(OH)N2 sites respectively, which is lower than those of Fe−N2 (1.03 eV), Co−N2 (1.24 eV) and Ni−N2 (0.73 eV) sites. The intermediate modification can shift the d-band center of the spin-up (minority) state downward by regulating the charge distribution at the M sites, leading to less charge being accepted by the intermediates from the M sites. This work provides new insights into the understanding of the activity of single-atom M−N2 sites.  相似文献   

18.
The plasma emission detector (PED) has been shown to be an element specific detector for supercritical fluid chromatography (SFC). The commonly used eluents (CO2 and N2O) tend to disturb the He plasma; two different discharge tubes were tested in an attempt to overcome this problem. Promising results were obtained with a concentric dual flow torch design for the element specific detection of Cl, H, and C containing analytes using N2O as SFC mobile phase.  相似文献   

19.
Recent years have seen a growing interest in metal-free CO2 activation by silylenes, silylones, and silanones. However, compared to mononuclear silicon species, CO2 reduction mediated by dinuclear silicon compounds, especially disilynes, has been less explored. We have carried out extensive computational investigations to explore the mechanistic avenues in CO2 reduction to CO by donor-stabilized disilyne bisphosphine adduct ( R1M ) and phosphonium silaylide ( R2 ) using density functional theory calculations. Theoretical calculations suggest that R1M exhibits donor-stabilized bis(silylene) bonding features with unusual Si−Si multiple bonding. Various modes of CO2 coordination to R1M have been investigated and the coordination of CO2 by the carbon center to R1M is found to be kinetically more facile than that by oxygen involving only one or both the silicon centers. Both the theoretically predicted reaction mechanisms of R1M and R2 -mediated CO2 reduction reveal the crucial role of silicon-centered lone pairs in CO2 activations and generation of key intermediates possessing enormous strain in the Si−C−O ring, which plays the pivotal role in CO extrusion.  相似文献   

20.
Copper–carbene [TpxCu?C(Ph)(CO2Et)] and copper–diazo adducts [TpxCu{η1‐N2C(Ph)(CO2Et)}] have been detected and characterized in the context of the catalytic functionalization of O?H bonds through carbene insertion by using N2?C(Ph)(CO2Et) as the carbene source. These are the first examples of these type of complexes in which the copper center bears a tridentate ligand and displays a tetrahedral geometry. The relevance of these complexes in the catalytic cycle has been assessed by NMR spectroscopy, and kinetic studies have demonstrated that the N‐bound diazo adduct is a dormant species and is not en route to the formation of the copper–carbene intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号