首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on resonant infrared laser ablation of polystyrene using single 8 ps pulses at a wavelength of 3.31 μm generated by a MgO:PPLN optical parametric amplifier pumped by a Nd:YLF laser. We determined the single-pulse ablation threshold to be 0.46 J/cm2, about a factor of five smaller than in previous free-electron-laser studies. Time-resolved imaging of the laser–target interaction reveals that the detailed dynamics of the ablation process begin with thermal expansion of a large volume of hot material from which a less dense plume of polymeric material evaporates. This plume disappears on a time scale of 0.75 μs and the hot polymer material recedes back into the crater from which it was expelled. Subsequently, and on a much longer time scale, structural alterations in the ablation crater continue to evolve for at least another millisecond. Our results suggest that single picosecond pulses are effective for the ablation of polymers and exhibit dynamics similar to those observed in studies using a free-electron laser.  相似文献   

2.
A compact diode-pumped passively Q-switched Tm,Ho:LuLiF4 laser with a Cr:ZnS saturable absorber is demonstrated for the first time. The maximum average output power of 74 mW is achieved at the absorbed pump power of 1.5 W, and the threshold power is only 0.68 W. The laser operates at the wavelength of 2,055 nm and produces pulses with near constant duration of 1.2 μs and pulse energy of 13 μJ at the pulse repetition frequency from 1 to 5.2 kHz. The stable long-pulse laser can be used in laser lidar systems for accurate wind velocity measurements.  相似文献   

3.
A passively Q-switched microsecond Er-doped fiber laser at 1532 nm wavelength was demonstrated by using a ReS2-based saturable absorber. The absorber was fabricated with ReS2 by exfoliating mechanically and transferred onto a fiber end. Stable Q-switched laser pulses were observed with the shortest pulse duration of 2.1 μs, the maximum average output power of 2.48 mW, and the pulse with energy up to 38 nJ. Our experimental results suggest that ReS2 is potential for a Q-switcher near 1.55 μm wavelength.  相似文献   

4.
In this paper, we report investigations of the electron emission from pure Zn cathodes irradiated by UV laser pulses of 23 ns (full-width at half-maximum) at a wavelength of 248 nm (5 eV). The metal cathodes were tested in a vacuum photodiode chamber at 10?5 Pa. They were irradiated at normal incidence and the anode–cathode distance was set at 3 mm. The maximum applied accelerating voltage was 18 kV, limited by the electrical breakdown of the photodiode gap. Under the above experimental conditions, a maximum applied electric field of 6 MV/m resulted. In the saturation regime, the measured quantum efficiency value increased with the accelerating voltage due to the plasma formation. The highest output current was achieved with 14 mJ laser energy, 18 kV accelerating voltage and its value was 12 A, corresponding to a global quantum efficiency (GQE) approximately of 1×10?4. The temporal quantum efficiency was 1.0×10?4 at the laser pulse onset time and 1.4×10?4 at the pulse tail. We calculated the target temperature at the maximum laser energy. Its value allowed us to obtain output pulses of the same laser temporal profile. Tests performed with a lower laser photon energy (4.02 eV) demonstrated a GQE of two orders of magnitude lower.  相似文献   

5.
6.
We report on the fabrication of graphitic columns induced in single-crystal diamond plates using 100 fs laser pulses at 800 nm wavelength. Different values of laser fluence (0.6–1.2 J/cm2) and graphitization speed (1–100 μm/s) were used for the laser treatment. A Raman investigation was performed aimed at evaluating the structural properties of the fabricated columns, showing that a lower laser fluence and a proper choice of graphitization speed may improve the degree of graphite crystallinity, and suppress the residual diamond content.  相似文献   

7.
We fabricated several near-infrared Si laser devices (wavelength ~1300 nm) showing continuous-wave oscillation at room temperature by using a phonon-assisted process induced by dressed photons. Their optical resonators were formed of ridge waveguides with a width of 10 μm and a thickness of 2 μm, with two cleaved facets, and the resonator lengths were 250–1000 μm. The oscillation threshold currents of these Si lasers were 50–60 mA. From near-field and far-field images of the optical radiation pattern, we observed the high directivity which is characteristic of a laser beam. Typical values of the threshold current density for laser oscillation, the ratio of powers in the TE polarization and TM polarization during oscillation, the optical output power at a current of 60 mA, and the external differential quantum efficiency were 1.1–2.0 kA/cm2, 8:1, 50 μW, and 1 %, respectively.  相似文献   

8.
In this work we report on new optically pumped THz laser lines from deuterated formic acid (DCOOD). An isotopic 13CO2 laser was used for the first time as a pump source for this molecule, and a Fabry–Perot cavity was used as a THz laser resonator. Optoacoustic absorption spectra were used as a guide to search for new THz laser lines. We could observe six new laser lines in the range from 303.8 μm (0.987 THz) to 725.1 μm (0.413 THz). The lines were characterized according to wavelength, relative polarization, relative intensity, and optimum working pressure. The transferred lamb-dip technique was used to measure the frequency absorption transition for both of these laser lines. Furthermore, we also present a catalogue of all THz laser lines generated from DCOOD.  相似文献   

9.
A new method for Q-switching an all-fiber laser is presented. It is based on induced acoustic long period grating operating on a null coupler, which acts as acoustically controlled tunable output coupler. Q-switching is achieved by switching on and off the acoustic wave in a burst mode, thereby generating laser pulses that are ~400 times shorter than the acoustically controlled coupler’s rise time. Output pulse energy of 22 μJ and temporal width of ~100 ns were measured at a wavelength of 1.54 μm.  相似文献   

10.
This paper demonstrates the use of a zinc oxide (ZnO) thin film in a 1-μm ring laser cavity as a saturable absorber to successfully generate Q-switching pulses. The tunability of the laser pulses is achieved by integrating a tunable bandpass filter (TBPF) in an ytterbium-doped laser cavity that results in 9.4 nm of tuning range, which wavelength is from 1040.70 nm to 1050.1 nm. The peak energy in the pulse which is 1.47 nJ was measured together with a minimum pulse width of 2.4 μs. In addition, the repetition rate increases from 25.77 to 45.94 kHz as the pump power level being increased from 103.1 to 175.1 mW. The results obtained in this experiment demonstrated consistent results and stable throughout the experiment. Therefore, ZnO thin film is considered as a good candidate in 1-μm pulsed laser applications.  相似文献   

11.
Single-shot ablation threshold for thin chromium film was studied using 266 nm, femtosecond laser pulses. Chromium is a useful material in the nanotechnology industry and information on ablation threshold using UV femtosecond pulses would help in precise micromachining of the material. The ablation threshold was determined by measuring the ablation crater diameters as a function of incident laser pulse energy. Absorption of 266 nm light on the chromium film was also measured under our experimental conditions, and the absorbed energy single-shot ablation threshold fluence was \(46 \pm 5\)  mJ/cm2. The experimental ablation threshold fluence value was compared to time-dependent heat flow calculations based on the two temperature model for ultrafast laser pulses. The model predicts a value of 31.6 mJ/cm2 which is qualitatively consistent with the experimentally obtained value, given the simplicity of the model.  相似文献   

12.
We report on the first graphene passively Q-switched Ho:YAG ceramic laser with central wavelength of 2,097 nm. Stable pulses of 28–64 kHz repetition rate and 2.6–9 μs pulse widths were generated under 1,907 nm thulium fiber laser pumping. Maximum average power of 264 mW with 9.3 μJ pulse energy was obtained under 3.27 W of pump power.  相似文献   

13.
Thermal diffusivity of laser micro- and nano-structured regions in polymethylmethacrylate (PMMA) was measured by the temperature wave method with a lateral resolution reduced to ~10 μm using an array of micro-sensors. The volume fraction of laser modified phase was maximized by implementing tightly focused femtosecond laser pulses inside PMMA and maintaining distance of few micrometers between the irradiation spots. The absolute value of thermal diffusivity of PMMA 1.066±0.08×10?7 m2/s was reliably determined with the miniaturized sensors. Regions laser structured by single pulses had no trace of carbonization, almost the same thermal diffusivity as the host PMMA, and a stress-induced birefringence Δn~10?4 modulated with period ~2 μm.  相似文献   

14.
This paper describes the laser generation of Ge ion fluxes and their application to the modification of semiconductor materials by ion implantation. The Ge ions were produced by ablating solid targets using the PALS high-power iodine laser system at the PALS Research Centre in Prague, operating at its third harmonic frequency (438 nm wavelength) and producing 0.4 ns pulses with energy up to 0.25 kJ (intensity≤1015 W/cm2). The goal of these investigations was optimisation of the implantation of low and medium energy laser-generated Ge ion fluxes and they were carried out as part of the project PALS000929. Recently, a new repetitive pulse laser system at IPPLM in Warsaw, with a wavelength of 1.06 μm, energy of ~0.8 J in a 3.5 ns-pulse, repetition rate of up to 10 Hz, and intensity on target of up to 1011 W/cm2, has also been employed to produce Ge ions by irradiating solid targets. The laser-generated ions were investigated with diagnostics based on the time-of-flight method: various ion collectors and an electrostatic ion-energy analyzer. The Ge ion fluxes were implanted into Si and SiO2 substrates located at distances of 10–30 cm from the target. The SiO2 films were prepared on single crystal Si substrates and were implanted with Ge ions with different properties. The properties of the Ge-implanted layers, in particular, the depth distributions of implanted Ge ions, were characterised using Rutherford backscattering and other material surface diagnostic methods.  相似文献   

15.
We have demonstrated, for the first time to our knowledge, lasing at 1.37 μm in a tellurite-based glass host doped with 0.5 mol.% neodymium: Nd3+:(0.8)TeO2–(0.2)WO3. The gain-switched laser could be operated with 59 μJ threshold pulse energy as well as 5.5% slope efficiency. As high as 6 μJ-pulses with a duration of 1.74 μs were obtained. The pulse repetition rate was 1 kHz. The emission cross section from the threshold analysis turned out to be 1.57×10?20 cm2 at 1370 nm by taking into account excited-state absorption from 4F3/2 to 4G7/2 energy level. Furthermore, the ratio of excited-state absorption to the emission cross section was found out to be 0.78 by using the slope efficiency value.  相似文献   

16.
In this paper, we present buried waveguides fabricated by fs laser writing in Nd3+ doped YLF crystal under double line approach (Miura et al. in Appl. Phys. Lett. 71:3329–3331, 1997). The waveguides were made by focusing two consecutive optical breakdown tracks (OBT) separated by about 20 μm. To make the optimal OBT, we focused the fs-laser pulses 200 μm below surface at intensities above the OB threshold for the material and controlled the writing speed. The guiding structures were fabricated by using a Chirped Pulse Amplification (CPA) femtosecond (fs) laser system. We chose the optimal writing parameters in order to obtain suitable waveguides, using around 3 μJ energy and writing speed from 15 to 50 μm/s. After optically exploring the waveguides by end-fire coupling, the guiding structures showed good optical performance. Guiding index profiles were retrieved from modal analysis by using BeamProp (RSoft) commercial software. This spatial distribution of the index increment, taking into account a lower refractive barrier on the OBT region plus the compressed region between the tracks, was obtained correctly fitting profiles modes. Finally, optical spectroscopy measurements were also performed in the waveguides. The results showed that the luminescence properties of Nd3+ ions are preserved in the waveguides compared with the values obtained for bulk.  相似文献   

17.
The process of local structure modification inside of lithium silicate glass under the combined laser action of two different wavelengths is considered. The first step is laser irradiation of ultrashort laser pulses with 532 nm wavelength, which is used to create of nucleation centers inside of the optically transparent glass. The crystallization of the structural modification areas was carried out by a photothermal action of CO2 laser radiation with a 10.6 μm wavelength. The range of crystallization temperatures was defined and the kinetics of the phase transformations of the modified regions inside of the glass were studied. Duration of crystallization was about 10 min with a slow heating and 25 s at the fast heating to crystallization temperature.  相似文献   

18.
An experimental investigation on the characteristics of laser and current pulses in a He–SrCl2 vapor laser is carried out. The temporal dependences of the discharge current pulse on the laser pulses at the 1.09 μm, ~3 μm and 6.45 μm lines in strontium atoms and ions are measured and analyzed under different laser output powers. It is found that all laser pulses appear at the falling edge of the current pulse and shift forward to the current pulse with increasing laser output power.  相似文献   

19.
Plasma-mediated ablations of brain tissue have been performed using picosecond laser pulses obtained from a Nd:YLF oscillator/regenerative amplifier system. The laser pulses had a pulse duration of 35 ps at a wavelength of 1.053 µm. The pulse energy varied from 90 µJ to 550 µJ at a repetition rate of 400 Hz. The energy density at the ablation threshold was measured to be 20 J/cm2. Comparisons have been made to 19 ps laser pulses at 1.68 µm and 2.92 µm from an OPG/OPA system and to microsecond pulse trains at 2.94 µm from a free running Er:YAG laser. Light microscopy and scanning electron microscopy were performed to judge the depth and the quality of the ablated cavities. No thermal damage was induced by either of the picosecond laser systems. The Er:YAG laser, on the other hand, showed 20 µm wide lateral damage zones due to the longer pulse durations and the higher pulse energies.  相似文献   

20.
Laser ablation and crater formation have been studied on a copper target using a 10 Hz Nd:YAG laser system delivering pulses up to 100 mJ in 40 ps with a flux on target F?≤?5000 J/cm2. Crater dimensions were measured using optical microscope or scanning electron microscope. In order to understand the process of crater formation, we considered various theoretical models present in the literature and revised them taking into account the occurrence of plasma phenomena, which are important at the intensities used in this experiment. We also compared our experimental results with other results obtained at the PALS laboratory, using a 0.44 μm wavelength laser and much higher laser intensities. Finally, we explore the possibility of extending the information derived from laser-produced craters to other types of craters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号