首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The reasonable dissociation limit for the G^1Ⅱg, state of dimer ^7Li2 is determined. The equilibrium internuclear distance, dissociation energy, harmonic frequency, vibrational zero energy, and adiabatic excitation energy are calculated using a symmetry-adapted-cluster configuration-interactlon method in complete active space in Gaussian03 program package at such numerous basis sets as 6-311 ++G, 6-311 ++G(2df,2pd), 6-311 ++G(2df, p), cc-PVTZ, 6- 311++G(3df,3pd), CEP-121G, 6-311++G(2df, pd), 6-311++G(d,p),6-311G(3df,3pd), D95(3df,3pd), 6-311++G(3df,2p), 6-311++G(2df), 6-311++G(df, pd) D95V++, and DGDZVP. The complete potential energy curves are obtained at these sets over a wide internuclear distance range and have least squares fitted to Murrell-Sorbie function. The conclnsion shows that the basis set 6-311++G(2df, p) is a most suitable one for the G^1Ⅱg state. At this basis set, the calculated spectroscopic constants Te, De, Eo, Re, ωe, ωeXe, ae, and Be are of 3.9523 eV, 0.813 06 eV, 113.56 cm^-1, 0.320 15 nm, 227.96 cm^-1, 1.6928 cm^-1, 0.004 436 cm^-1, and 0.4689 cm^-1, respectively, which are in good agreement with measurements whenever available. The total 50 vibrational levels and corresponding inertial rotation constants are for the first time calculated and compared with available RKR data. And good agreement with measurements is obtained.  相似文献   

2.
The comparison between single-point energy scanning (SPES) and geometry optimization (OPT) in determining the equilibrium geometries of c^3∑g^+ and B^1-Пu states of dimer 7Li2 is made at numerous basis sets by using a symmetryadapted-cluster configuration-interaztion (SAC-CI) method in the Gaussian 03 program package. In this paper the difference of the equilibrium geometries obtained by SPES and by OPT is reported. The results obtained by SPES are found to be more reasonable than those obtained by OPT in full active space at the present SAC-CI level of theory. And the conclusion is attained that the cc-PVTZ is a most suitable basis set for these states. The calculated dissociation energies and equilibrium geometries are 0.8818 eV and 0.3090 nm for c^3∑g^+ state, and 0.3668 eV and 0.2932 nm for B^1-Пu state respectively. The potential energy curves are calculated over a wide internuclear distance range from about 2.5α0 to 37α0 and have a least-squares fit into the Murrell-Sorbie function. According to the calculated analytic potential energy functions, the harmonic frequencies (We) and other spectroscopic data (ωeXe, Be and αe) are calculated. Comparison of the theoretical determinations at present work with the experiments and other theories clearly shows that the present work is the most complete effort and thus represents an improvement over previous theoretical results.  相似文献   

3.
The accurate dissociation energy and harmonic frequency for the highly excited 2^1Пu state of dimer ^7Li2 have been calculated using a symmetry-adapted-cluster configuration-interaction method in complete active space. The calculated results are in excellent agreement with experimental measurements. The potential energy curves at numerous basis sets for this state are obtained over a wide internuclear separation range from about 2.4a0 to 37.0a0. And the conclusion is gained that the basis set 6-311++G(d,p) is a most suitable one. The calculated spectroscopic constants De, Re, ωe, ωeχe, ae and Be at 6-311++G(d,p) are 0.9670 eV, 0.3125 nm, 238.6 cm^-1, 1.3705 cm^-1, 0.0039 cm^-1 and 0.4921 cm^-1, respectively. The vibrational levels are calculated by solving the radial SchrSdinger equation of nuclear motion. A total of 53 vibrational levels are found and reported for the first time. The classical turning points have been computed. Comparing with the measurements, in which only the first nine vibrational levels have been obtained so far, the present calculations are very encouraging. A careful comparison of the present results of the parameters De and We with those obtained from previous theories clearly shows that the present calculations are much closer to the measurements than previous theoretical results, thus representing an improvement on the accuracy of the ab initio calculations of the potentials for this state.  相似文献   

4.
曾晖  赵俊 《中国物理 B》2012,(7):575-580
In this paper, the energy, equilibrium geometry, and harmonic frequency of the ground electronic state of PO2 are computed using the B3LYP, B3P86, CCSD(T), and QCISD(T) methods in conjunction with the 6-311++G(3df, 3pd) and cc-pVTZ basis sets. A comparison between the computational results and the experimental values indicates that the B3P86/6-311++G(3df, 3pd) method can give better energy calculation results for the PO2 molecule. It is shown that the ground state of the PO2 molecule has C2v symmetry and its ground electronic state is X2A1. The equilibrium parameters of the structure are Rp-o = 0.1465 am, ZOPO = 134.96°, and the dissociation energy is Ed = 19.218 eV. The bent vibrational frequency Ul = 386 cm-1, symmetric stretching frequency v2 = 1095 cm-1, and asymmetric stretching frequency ua = 1333 em-1 are obtained. On the basis of atomic and molecular reaction statics, a reasonable dissociation limit for the ground state of the PO2 molecule is determined. Then the analytic potential energy function of the PO2 molecule is derived using many-body expansion theory. The potential curves correctly reproduce the configurations and the dissociation energy for the PO2 molecule.  相似文献   

5.
This paper applies the symmetry-aziapted-cluster/symmetry-adapted-cluster configuration-interaction (SAC/SACCI) method to optimize the structures for X^1∑^+, A^1 Ⅱ and C^1 ∑^- states of SiO molecule with the basis sets D95++, 6-311++G and 6-311++G^**. Comparing the obtained results with the experiments, it gets the conclusion that the basis set 6-311++G^** is most suitable for the optimal structure calculations of X^1.∑^+, A^Ⅱ and C^1∑^- states of SiO molecule. The whole potential energy curves for these electronic states are further scanned by using SAC/6-311++G^** method for the ground state and SAC-CI/6-311++G^** method for the excited states, then use a least square method to fit Murrell~Sorbie functions, at last the spectroscopic constants and force constants are calculated, which are in good agreement with the experimental data.  相似文献   

6.
This paper reports that the equilibrium structure of NH2 has been optimized at the QCISD/6-311++G (3df, 3pd) level. The ground-state NH2 has a bent (C2v, X^2B1) structure with an angle of 103.0582°. The geometrical structure is in good agreement with the other calculational and experimental results. The harmonic frequencies and the force constants have also been calculated. Based on the group theory and the principle of microscopic reversibility, the dissociation limits of NH2(C2v, X^2B1) have been derived. The potential energy surface of NH2(X^2B1) is reasonable. The contour lines are constructed, the structure and energy of NH2 reappear on the potential energy surface.  相似文献   

7.
余本海  戴启润  施德恒  刘玉芳 《中国物理》2007,16(10):2962-2967
The density functional theory (B3LYP, B3P86) and the quadratic configuration-interaction method including single and double substitutions (QCISD(T), QCISD) presented in Gaussian03 program package are employed to calculate the equilibrium internuclear distance $R_{\rm e}$, the dissociation energy $D_{\rm e }$ and the harmonic frequency $\omega _{\rm e}$ for the $X{}^{1}\Sigma^{ + }_{\rm g}$ state of sodium dimer in a number of basis sets. The conclusion is gained that the best $R_{\rm e}$, $D_{\rm e}$ and $\omega _{\rm e}$ results can be attained at the QCISD/6-311G(3df,3pd) level of theory. The potential energy curve at this level of theory for this state is obtained over a wide internuclear separation range from 0.16 to 2.0~nm and is fitted to the analytic Murrell--Sorbie function. The spectroscopic parameters $D_{\rm e}$, $D_{0}$, $R_{\rm e}$, $\omega _{\rm e}$, $\omega _{\rm e}\chi _{\rm e}$, $\alpha _{\rm e}$ and $B_{\rm e}$ are calculated to be 0.7219~eV, 0.7135~eV, 0.31813~nm, 151.63~cm$^{ - 1}$, 0.7288~cm$^{ - 1}$, 0.000729~cm$^{ - 1}$ and 0.1449~cm$^{ - 1}$, respectively, which are in good agreement with the measurements. With the potential obtained at the QCISD/6-311G(3df,3pd) level of theory, a total of 63 vibrational states is found when $J=0$ by solving the radial Schr\"{o}dinger equation of nuclear motion. The vibrational level, corresponding classical turning point and inertial rotation constant are computed for each vibrational state. The centrifugal distortion constants ($D_{\upsilon }\, H_{\upsilon }$, $L_{\upsilon }$, $M_{\upsilon }$, $N_{\upsilon }$ and $O_{\upsilon })$ are reported for the first time for the first 31 vibrational states when $J=0$.  相似文献   

8.
王建坤  吴振森 《光谱实验室》2006,23(6):1230-1233
用分子轨道从头算方法,对CH自由基的基态(X^2П)和低激发态(α^4∑^-)的光谱数据进行了计算。计算结果表明,在基态CH(X^2П)时。在QCISD(T)/6-311G++(3df.3pd)水平上.计算所得的键长R=0.1120981nm,偶极矩μ=1.5891 Debye,υ=2845.43cm^-1均与实验值相吻合,在B3PW91/6-311G++(3df,3pd)理论水平上,计算的基态能量为-38.496143Hartree。误差仅为0.22%;对低激发态CH(α^4∑^-),使用含时的密度泛函方法(TDDPT)和大基组6—311++G(3df,3pd)计算所得的R=0.1094nm,垂直跃迁能量为0.926eV,均与实验结果有较好的吻合。  相似文献   

9.
曾晖  赵俊 《中国物理 B》2012,(7):579-584
In this paper, the energy, equilibrium geometry, and harmonic frequency of the ground electronic state of PO2 are computed using the B3LYP, B3P86, CCSD(T), and QCISD(T) methods in conjunction with the 6-311++G(3df, 3pd) and cc-pVTZ basis sets. A comparison between the computational results and the experimental values indicates that the B3P86/6-311++G(3df, 3pd) method can give better energy calculation results for the PO 2 molecule. It is shown that the ground state of the PO2 molecule has C2v symmetry and its ground electronic state is X2 A1 . The equilibrium parameters of the structure are R P O = 0.1465 nm, ∠OPO = 134.96°, and the dissociation energy is Ed = 19.218 eV. The bent vibrational frequency ν 1 = 386 cm-1 , symmetric stretching frequency ν 2 = 1095 cm-1 , and asymmetric stretching frequency ν 3 = 1333 cm-1 are obtained. On the basis of atomic and molecular reaction statics, a reasonable dissociation limit for the ground state of the PO2 molecule is determined. Then the analytic potential energy function of the PO2 molecule is derived using many-body expansion theory. The potential curves correctly reproduce the configurations and the dissociation energy for the PO2 molecule.  相似文献   

10.
本文采用量子力学从头算方法,运用电相关单双耦合CCSD(T)/6—311++G(3df,2pd)和QCISD(T)/6—311++G(3df,2pd)研究了PH、PD分子基态的结构与势能函数,计算出了这些分子的光谱数据(ωe、ωeχe、Be、αe、De),结果与实验光谱数据吻合较好.这表明上述分子基态的势能函数可用经修正的Murrell-Sorbie+c6函数来表示.  相似文献   

11.
The gas-phase reaction of VO2+(1A1/3A′)+ CH4 to yield P1[V(OCH2) ++H2O] and P2[(OCH2) ++H2] has been studied using density functional theory (DFT) at the B3LYP/6-311++G (3df, 3pd)//6-311G(2d,p) level. And the reaction mechanism of activation of C-H bond of CH4 by VO2+ has been investigated. The computational results manifest that the reaction channel of forming H2 is the dominant one. The potential energy curve-crossing dramatically affecting reaction mechanism and reaction rate has been discussed.  相似文献   

12.
本论文分别用从头算方法(B3LYP、B3PW91、MP2)结合基组(aug)cc-pVNZ(N∈{T,D,Q})及6-311G、6-311G**、6-311G(2df,2pd)、6-311G(3df,3pd)计算了ArNO分子的平衡几何结构、光谱常数和非谐振力场.结果表明:在MP2方法下计算的结果要优于B3LYP和B3PW91计算的结果;基组6-311G、6-311G**、6-311G(2df,2pd)、6-311G(3df,3pd)下的结果普遍优于cc-PVNZ(N=T,D,Q)得到的结果;MP2理论方法结合基组6-311G、6-311G**、6-311G(2dr,2pd)、6-311G(3df,3pd)基组计算的结果非常接近实验值,对实验测量某些光谱数据有较好的预测作用.  相似文献   

13.
This paper reports that the interaction potential for the X3Z- state of NH radical is constructed at the CCSD(T)/ cc-PV6Z level of theory. Using this potential, this paper calculates the spectroscopic parameters (De, Re, ωe, ωeχe, αe and Be) and their values are of 3.578eV, 0.10368nm, 3286.833cm^-1, 78.433cm^-1, 0.6469cm^-1 and 16.6735cm^-1 respectively, which are in excellent agreement with the experiments. Then the total of 14 vibrational states has been found when J=0 by solving the radial Schrodinger equation of nuclear motion. For each vibrational state, the vibrational manifolds are reported for the first time. And last, the total cross sections, s-wave, p-wave and d-wave cross sections are computed for the elastic collisions between two ground-state atoms (hydrogen and nitrogen) at low temperatures. It finds that the total elastic cross sections are dominated by s-wave scattering when the collision energy is below 10^-6a.u. The pronounced shape resonance is found at energy of 6.1 × 10^-6a.u. Calculations have shown that the shape resonance comes from the p-wave contributions.  相似文献   

14.
在本论文中,我们在Gaussian 03软件下,采用密度泛函理论(B3LYP)以及二阶微扰理论(MP2)的方法结合Dunning相关一致基组cc-pVNZ (N=T,D,Q)以及6-311G、6-311G**、6-311G(2df,2pd)、6-311G(3df,3pd)基组优化了HeNO分子的几何结构,然后在此基础上计算了它们的光谱常数和非谐振力场。通过计算得到了分子的平衡几何结构、基频、转动常数、四次和六次离心畸变常数等,并与相关的实验值和理论值进行了比较;预测了部分光谱常数,其中包括谐振频率、非谐性常数、振转相互作用常数、三次力常数、四次力常数和科里奥利耦合常数。结果表明,在MP2方法下计算的结果要优于B3LYP计算的结果;基组6-311G、6-311G**、6-311G(2df,2pd)、6-311G(3df,3pd)下的结果普遍优于cc-PVNZ (N=T,D,Q)得到的结果。结果还表明,MP2理论方法结合基组6-311G、6-311G**、6-311G(2df,2pd)、6-311G(3df,3pd)基组计算的结果非常接近实验值,对实验测量某些光谱数据有较好的预测作用  相似文献   

15.
In this paper, the equilibrium geometry, harmonic frequency and dissociation energy of S2^- and S3^- have been calculated at QCISD/6-311++G(3d2f) and B3P86/6-311++G(3d2f) level. The S2^- ground state is of 2IIg, the S3^- ground state is of 2B1 and S3^- has a bent (C2v) structure with an angle of 115.65° The results are in good agreement with these reported in other literature. For S3^- ion, the vibration frequencies and the force constants have also been calculated. Base on the general principles of microscopic reversibility, the dissociation limits has been deduced. The Murrell-Sorbie potential energy function for S2^- has been derived according to the ab initio data through the least- squares fitting. The force constants and spectroscopic data for S2^- have been calculated, then compared with other theoretical data. The analytical potential energy function of S3^- have been obtained based on the many-body expansion theory. The structure and energy can correctly reappear on the potential surface.  相似文献   

16.
AlC,SiC基态分子结构与分析势能函数的量子力学计算   总被引:1,自引:0,他引:1  
用密度泛函理论的B3LYP方法和二次组态相互作用(QCISD(T))方法,选择6-31G(d,p)、6-311 G(2df,2pd)、6-311 G(3df,3pd)、cc-PVTZ、AUG-cc-PVTZ基组,优化计算了AlC和SiC分子基态的能量,平衡结构,谐振频率.根据原子分子反应静力学原理,导出了AlC和SiC分子基态的合理离解极限和离解能.通过优化计算结果和实验数据的对比,选择QCISD(T)/6-311 G(3df,3pd)方法对AlC和SiC分子基态的势能面进行了单点能扫描.采用最小二乘法拟合得到了AlC和SiC分子基态的Murell-Sor-bie势能函数.同时计算了光谱参数(Be,eα,ωe,ωeχe)和力常数(f2,f3,f4),并与实验结果进行比较.结果表明,计算结果与实验数据吻合的较好.  相似文献   

17.
本论文分别用从头算方法(B3LYP、MP2)结合基组cc-pVNZ (N ∈ {T,D,Q}) 及 6-311G、6-311G(2df,2pd)计算了NeNO分子的平衡几何结构、光谱常数和非谐振力场.结果表明:在MP2方法下计算的结果略优于B3LYP计算的结果;基组6-311G、6-311G(2df,2pd)下的结果相对优于cc-PVNZ (N=T,D,Q)得到的结果;MP2理论方法结合基组6-311G、6-311G(2df,2pd)基组计算的结果非常接近实验值,这些计算结果对实验测量某些光谱数据有较好的预测作用.  相似文献   

18.
本论文分别用从头算方法(B3LYP、MP2)结合基组cc-pVNZ (N ∈ {T,D,Q}) 及 6-311G、6-311G(2df,2pd)计算了NeNO分子的平衡几何结构、光谱常数和非谐振力场.结果表明:在MP2方法下计算的结果略优于B3LYP计算的结果;基组6-311G、6-311G(2df,2pd)下的结果相对优于cc-PVNZ (N=T,D,Q)得到的结果;MP2理论方法结合基组6-311G、6-311G(2df,2pd)基组计算的结果非常接近实验值,这些计算结果对实验测量某些光谱数据有较好的预测作用.  相似文献   

19.
The hybrid density functional theory B3LYP with basis sets 6-31G* has been used to study on the equilibrium geometries and electronic structures of possible isomers of Si3N4 clusters. 24 possible isomers are obtained. The most stable isomer of Si3N4 is a 3D structure with 7 Si-N bonds and 2 N-N bonds that could beformed by 3 quadrangles. The bond properties of the most stable isomer was analyzed by using natural bond orbital method (NBO), the results suggest that the charges on Si and N atoms in Si-N bonds are quite large, so theinteraction of N-Si atoms in Si3N4 cluster is of strongly electric interaction. The primary IR and Raman vibrational frequency located at 1033.40 cm^-1, 473.63 cm^-1 respectively. The polarizabilities and hyperpolarizabilities of the most stable isomer are also analyzed.  相似文献   

20.
采用B3LYP、BP86、B3P86、QCISD、CCSD方法.分别选用6-311G(2df,3pd)、6-311G(2df,2pd)、6-311G(3df,2pd)、6-311G(3df,3pd)、sddall、sdd基组对CaS基态( )分子进行结构优化.最后选用最佳基组B3LYP/6-311G(3df,3pd)的计算结果.分别对Murrell- Sorbie(i=3,4,5,6,7,8,9)函数及修正的函数Murrell- Sorbie+ 运用最小二乘法拟合运算,导出CaS分子的力常数( );最终选用最能反映CaS性质的函数Murrell- Sorbie(i=9),计算CaS光谱常数( ).结果表明:用Murrell- Sorbie(i=9)函数计算出的 比选用Murrell- Sorbie(i=3,4,5,6,7,8)及Murrell- Sorbie+ 更接近实验数据;用Murrell- Sorbie(i=9)计算的CaS分子光谱常数与理论值非常吻合;CaS分子运用 Murrell- Sorbie(i=9)函数能够准确表达.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号