首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper has investigated the transmission performance of the single sideband (SSB) optical millimeter (mm)-wave with signal carried by the sideband in BPSK format in duplex radio-over-fiber (RoF) system theoretically and numerically. The SSB optical mm-wave signal is generated by a LiNbO3 Mach–Zehnder modulator and there exists an optimal modulation index to generate the SSB optical mm-wave with a maximal RF photocurrent. The SSB optical mm-wave is much suitable for the duplex ROF link with the uplink lightwave recovered from the downlink because the optical carrier carries no signal. In such a duplex RoF link, although there are the spurs on the optical carrier, they have little influence on the downlink and the uplink signal even if the modulation index is large.  相似文献   

2.
In this paper, we have proposed a novel approach to generate optical carrier suppression (OCS) mm-wave with signal only carried by one first-order sideband using a dual-parallel MZM in radio-over-fiber (RoF) system, and the transmission performance was also investigated. As the optical mm-wave signal is transmitted along the fiber, there is no time shift of the data symbols resulting from the group velocity dispersion in the fiber because the signal is only modulated on one sideband. The simulation results showed that the eye diagram keeps open and clear even when the optical mm-wave signals are transmitted over 96-km and the power penalty is about 1-dB after fiber transmission distance of 60-km, which is quite consistent with our theoretical analysis. Furthermore, the proposed OCS optical mm-wave generation approach is also used in a full-duplex RoF link based on wavelength reuse at the base station for the uplink due to another pure sideband without carrying data. The bidirectional 2.5-Gbit/s data is successfully transmitted over 40-km standard single mode fiber with less than 0.5-dB power penalty in the simulation. Both the unidirectional RoF downlink and the full-duplex RoF system have good performance.  相似文献   

3.
In order to improve RF frequency to achieve higher bandwidth and larger capacity, we propose a novel scheme to generate optical single sideband (SSB) millimeter-wave, in which frequency doubling of local radio frequency (RF) is obtained by using one integrated Mach–Zehnder modulator (MZM), and we theoretically investigate the generating principle of SSB. The optical SSB modulation scheme is employed to generate 60 GHz optical mm-wave and the 2.5 Gb/s baseband signal is simultaneously up-converted at the central station (CS) for downlink transmission, and the optical carrier is reused for uplink connection at the base station (BS). The full-duplex 2.5 Gb/s data are successfully transmitted over 40 km standard single-mode fiber (SMF-28) for both uplink connection and downlink connection with less than 2-dB power penalty. Results show the novel 60 GHz RoF system with optical SSB mm-wave signal generation using optical frequency doubling is feasible and we can obtain simple cost-efficient configuration and good performance over long-distance transmission.  相似文献   

4.
A full-duplex radio-over-fiber (RoF) link with a novel scheme to generate 60 GHz mm-waves from a 5 GHz RF signal source is investigated. In the RoF downlink, the required frequency of the RF oscillator is reduced greatly. Since the optical carrier is not modulated by downstream data, part of it is reused to carry upstream data and the upstream data is transmitted to the central station using optical single-sideband modulation. In this way, a single wavelength is used for both downstream and upstream transmissions. Based on this scheme, a full-duplex RoF link is built and its transmission performance is analyzed. Theoretical analysis and numerical simulation show that the downstream signal cannot only eliminate code form distortion caused by time shift of the code edges, but also reduce the influence of the fading effect as the 60 GHz DSB optical mm-wave signal is transmitted along the fiber, and the upstream signal is immune to both fading effect and time shift of the code edges.  相似文献   

5.
A 60-GHz bidirectional radio-over-fiber (RoF) system using two-carrier-injected distributed feedback (DFB) laser is proposed and demonstrated to realize optical single sideband (SSB) modulation for downlink.An injection-locked Fabry-P'erot laser is also carried out to realize wavelength reuse in uplink.Transmission of 2.5 Gb/s on a 60-GHz carrier for downlink and 622-Mb/s baseband signal for uplink are both successfully demonstrated over 50-km single mode fiber without chromatic dispersion compensation.  相似文献   

6.
We propose and experimentally demonstrate a harmonic radio frequency (RF) carrier generation and broadband data upconversion technique with single mode and single sideband (− SSB) modulation for radio-over-fiber (RoF) systems using stimulated Brillouin scattering (SBS). The optical carrier-to-sideband ratio (CSR) of the single mode and SSB modulated signal can be easily adjusted to achieve the best received sensitivity performance of the RoF system. By using this method, we successfully demonstrate generation of third-harmonic RF carrier at 32.625 GHz with fLO of 10.875 GHz and upconversion of 1.25-Gb/s data to the RF carrier band. In addition, the data bandwidth is independent of the Brillouin gain profile. Finally, the transmission performance of the RoF downlink system is examined.  相似文献   

7.
The influence of the fiber chromatic dispersion on double sideband (DSB), optical carrier suppression (OCS), and single sideband (SSB) optical mm-wave signals is investigated based on the Taylor expansion of the propagation constant and is verified by simulation. According to our theoretical results, the fading effect suppresses the signal power of the DSB optical mm-wave periodically in a cosine-like pattern, and it can be described by the zero-order Taylor expansion of the propagation constant. For the optical mm-wave with the signal modulated on two or more tones, the bit pulses of the mm-wave signal are distorted by the dispersion-inducing bit walk-off effect between tones, which is expressed by the first-order Taylor expansion of the propagation constant. Moreover, as the signal rate and the transmission distance are increased further, higher-order Taylor expansion of the propagation constant still degrades the optical mm-wave signal even if both the fading effect and the bit walk-off effect are eliminated completely. The distortion of the signal pulses of SSB optical mm-wave is derived based on the second-order Taylor expansion of the propagation constant. This degradation is verified by the simulation with the eye diagram evolution of the SSB optical mm-wave signal.  相似文献   

8.
Simultaneous downlink performance improvement and uplink wavelength reuse in a full-duplex millimeter-wave (MMW) radio-over-fiber (RoF) system by using a simple and cost-effective all-fiber optical interleaver are proposed and demonstrated. The MMW RoF downlink performance improvement is based on suppressing optical carrier-to-sideband ratio (OCSR), with which the mechanism is confirmed by theoretic analysis and derived experimental results. Measured results show that, by suppressing OCSR using a fabricated all-fiber optical interleaver, the downlink optical receiver sensitivity is improved about 2.1 dB. The downlink data rate is 1.25 Gbit/s and the carrier frequency is 58.1 GHz; the link consists of 6 km optical single-mode fiber and 1 m wireless connection. On the other hand, with the interleaver suppressing downlink OCSR, simultaneously an optical carrier is recovered from the RoF downlink and is reused for RoF uplink transmission. The uplink is operated at 62.9 GHz and the data rate is the same 1.25 Gbit/s. With the recovered optical carrier, a laser-free remote access point is achieved. The principle, structure, and fabrication of an all-fiber optical interleaver are also presented in this paper.  相似文献   

9.
Hong Wen 《Optics Communications》2008,281(8):2083-2088
In this paper, we present a full-duplex radio-over-fiber system incorporating both optical millimeter-wave (mm-wave) generation and wavelength reuse for uplink connection. The optical double sidebands (DSB) signal is generated by using only one inexpensive broadband direct modulation laser (DML), to which a mixing RF signal is applied. An optical interleaver is then used to separate the first-order optical sidebands from the optical carrier of optical DSB signal. The separated first-order optical sidebands are beat to generate mm-wave signal that has double the frequency of the RF drive signal, while the separated optical carrier is reused as light source to remodulate uplink signal. Both detailed theoretical analysis and experiments to demonstrate the feasibility of the proposed system are presented. Experiment result shows that the bidirectional 2.5 Gb/s data can be successfully transmitted over 40 km standard single-mode fiber (SSMF) with less than 2 dB power penalty.  相似文献   

10.
The effects of direct current (dc) bias-drifting on radio on fiber (RoF) links are quantitative investigated and simulated. Single sideband (SSB) modulation and carrier suppressed double sideband (CS-DSB) modulation RoF links are considered, power variation of targeted signal and harmonic suppression on account for bias-drifting are calculated and evaluated. Our results suggest that power variation can be maintained within 1.1 dB with dc bias drift ε less than 5% in the SSB modulation RoF link and the degradation of harmonic suppression is evident with ε exceed 2% in the CS-DSB modulation RoF link.  相似文献   

11.
一种改进的双边带调制产生光毫米波的方案   总被引:9,自引:0,他引:9  
提出了应用于光纤无线通信系统中一种改进的双边带调制产生光毫米波方案。在中心站采用强度调制将射频信号调制到光载波上产生一个双边带信号,滤掉中心载波后,利用光交叉复用器把双边带信号的上下边带模分开,将数据速率为2.5Gbit/s的基带信号调制到下边带模后,再与未调信号耦合后产生光毫米波,然后通过单模光纤传输至基站,在基站经过光电转换后产生电毫米波信号。从理论上对该毫米波的色散特性进行了分析,发现毫米波的接收功率不会周期的衰减。同时通过实验研究表明,下行链路信号通过光纤能传输50km而不需要色散补偿,功率代价小于1dBm。因此,该方法产生的光毫米波能有效克服光纤色散引起的信号时延而导致的基带信号退化,适合于远距离传输。  相似文献   

12.
Novak  D.  Smith  G. H.  Lowery  A. J.  Liu  H. F.  Waterhouse  R. B. 《Optical and Quantum Electronics》1998,30(11-12):1021-1031
This paper describes two techniques for the implementation of millimetre-wave (mm-wave) wireless communication systems incorporating optical fibre distribution networks. Fibre chromatic dispersion can exhibit severe effects on the transportation of mm-wave frequencies over fibre, resulting in greatly reduced post-detection rf powers. Each mm-wave fibre–wireless system demonstrated here incorporates a method for the generation and modulation of an optical mm-wave carrier, which enables the effect of fibre dispersion to be significantly reduced. One set-up is a direct-detection scheme where optical single-sideband (SSB) with carrier modulation is used to overcome fibre dispersion effects. The other system employs a self-heterodyne arrangement in which a dual-frequency optical source generates a low phase-noise mm-wave beat signal. Data transmission is achieved by externally modulating the dual-mode signal and reduced effects of fibre dispersion are observed.  相似文献   

13.
We have proposed and demonstrated a novel Mach-Zehnder modulation technique which employs a 1 × 4 multimode interference MMI coupler and four optical phase-modulator waveguides to generate optical single sideband (SSB) signals in radio-over-fiber (ROF) transmission link. It is shown that when the RF (radio frequency) modulation index is large, the optical SSB signal generated by conventional modulation scheme contains a significant part of undesired higher order harmonics, accordingly, much distortion in the RF signal was detected at the base station (BS). However, the main undesired higher order harmonics can be suppressed using our proposed modulation scheme and the performance of the transmission links were largely improved in single-channel and dense wavelength-division multiplexing (DWDM) cases.  相似文献   

14.
Song Y  Zheng X  Zhang H  Guo Y  Zhou B 《Optics letters》2007,32(15):2248-2250
A means to achieve all-optical broadband demodulation of subcarrier back into digital data in an upstream link of a millimeter-wave radio over fiber (RoF) system is proposed and demonstrated experimentally. In the central station, the subcarrier from the base station of RoF system can be demodulated in the optical domain directly, without any millimeter-wave electronic device. Using this approach, the rf power degradation can be avoided even when the base stations in systems employ the conventional simple double-sideband modulation. Therefore, an inexpensive and simple configuration of the uplink for broadband signal receiving can be realized.  相似文献   

15.
Zhenbo Xu 《Optics Communications》2011,284(13):3403-3407
The inverse return-zero (IRZ) modulation format and Manchester format were investigated as wavelength reusing schemes in the RoF downlink systems. Since both of the modulation formats featured power remaining in the bit slot regardless of the bit value, the downlink optical carrier can be reused as the uplink light source. The performances of two formats were analyzed in the symmetrical and asymmetrical duplex RoF system. It was found that IRZ is more suitable for symmetrical system, and the duty cycle of IRZ pulse is the critical factor on the asymmetrical RoF system performance. However the Manchester format demonstrated the large system tolerance on asymmetrical duplex RoF system with the receiver sensitivity degradation within 1 dB.  相似文献   

16.
Abstract

A full-duplex link implementing alternative wired and wireless access for wavelength-division multiplexing passive optical network is proposed with the uniformed three-tone converged optical signal, which provides a wired or wireless downlink access signal alternatively and an uplink optical carrier. The uplink optical carrier reversed by the converged optical signal makes the hybrid optical node unit free from the optical source. The simulation results show that the full-duplex link with a 10-Gb/s 16-quadrature amplitude modulation (16-QAM) downstream and 5 Gb/s binary upstream can provide both wired access with a bit-error rate below 10?9 and radio-over-fiber-based wireless access with a bit-error rate below 10?7 over 40 km of fiber without an optical source and optical amplifier in the hybrid optical node unit.  相似文献   

17.
In this paper, we investigate the impact of interferometer delay time in a 5 Gb/s optical double sideband-suppressed carrier (ODSB-SC) RoF system transmitting two wavelength interleaved radio frequency (RF) signals at 10 and 15 GHz over an optical fiber. Here, an optical Mach–Zehnder modulator is used for both optical carrier suppression and signal modulation. At the receiver, delay interferometer is used for the separation of RF frequency signals. We analyze the performance of the RoF system by varying the value of delay time of interferometer from 0.02 to 0.14 ns. The result shows that the RoF system performance is optimum for the time delay of 0.1 ns. Further, the optical spectrums, RF spectrums and eye diagrams of two interleaved RF signals have been compared.  相似文献   

18.
We have investigated the generation of the 40-GHz double-sideband optical millimeter (mm)-wave with signal carried only by its optical carrier via an embedded LiNbO3 Mach-Zehnder modulator (LN-MZM). Since the optical carrier and its two first-order sidebands are dominant and their powers are well balanced, the first-order harmonic in the photocurrent gets maximal. As the optical mm-wave signal is transmitted along the fiber, there is no code outline distortion because the signal is only modulated on the optical carrier. Although the first-order harmonic shows the periodical fading effect when the optical mm-wave signal is transmitted along the fiber, its degradation on the radio-over-fiber link can be avoided by adjusting the position of the fading nodes via varying the main MZM bias voltage, and the signal still keeps much good eye diagram even after 50-km fiber transmission. The experimental results prove our theory.  相似文献   

19.
Abstract

A novel full duplex fiber wireless link providing alternative wired and 60-GHz wireless access is proposed based on a polarization orthogonal dual-tone optical millimeter-wave signal. In a hybrid optical network unit, the downlink optical signal can be decomposed as a single-sideband optical millimeter-wave signal (baseband optical signal) for wireless (wired) access by a polarization controller and polarization beam splitter. The uplink optical carrier abstracted from the downlink optical signal makes the hybrid optical network unit free from the optical source. The simulation results show that both downlinks and uplinks for either wired or wireless access can maintain quite good performance over 60 km of fiber.  相似文献   

20.
This paper proposes a 32-tupling frequency millimeter-wave (MMW) filter-free system based on four Mach-Zehnder Modulators (MZM) connected in parallel and cascaded with a simple radio-fiber (RoF) link structure. The four MZMs are all at the maximum transmission point (MATP), and the radio frequency (RF) driving voltage phase difference between MZMs is π /2. The center carrier is suppressed by using an optical attenuator (OATT) and an optical phase shifter (OPS). Two parallel MZMs can generate ±8th order and ±12th order optical sidebands, and the ±4th order optical sidebands can be suppressed by adjusting the modulation index m of the MZM, using cascaded two dual-parallel MZMS(DPMZM) and the phase difference of the RF signal source is π/4 to generate ±16th order optical sidebands. The theoretical analysis and simulation experiments are performed for the scheme proposed in this paper. The results show that the simulated and theoretical values of the optical sideband suppression ratio (OSSR) for ±16th order optical sideband signals are 60.02 and 59.96 dB, respectively, and the simulated and theoretical values of the RF sideband suppression ratio (RFSSR) for the 32-tupling MMW signal are 56.34 and 53.94 dB, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号