首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The synthesis of alkyl boronic esters by direct decarboxylative radical addition of carboxylic acids to vinyl boronic esters is described. The reaction proceeds under mild photoredox catalysis and involves an unprecedented single‐electron reduction of an α‐boryl radical intermediate to the corresponding anion. The reaction is amenable to a diverse range of substrates, including α‐amino, α‐oxy, and alkyl carboxylic acids, thus providing a novel method to rapidly access boron‐containing molecules of potential biological importance.  相似文献   

2.
Gold‐catalyzed oxidations of alkynes by N‐oxides offer direct access to reactive α‐oxo gold carbene intermediates from benign and readily available alkynes instead of hazardous diazo carbonyl compounds. Despite various versatile synthetic methods developed based on this strategy, one of the hallmarks of α‐oxo carbene/carbenoid chemistry, that is, the Wolff rearrangement, has not been realized in this context. This study discloses the first examples that show the Wolff rearrangement can be readily realized by α‐oxo gold carbenes oxidatively generated from TBS‐terminated alkynes (TBS=tert‐butyldimethylsilyl). The thus‐generated silylketenes can be either isolated pure or subsequently trapped by various internal or external nucleophiles in one pot to afford α‐silylated carboxylic acids, their derivatives, or TBS‐substituted allenes.  相似文献   

3.
An efficient catalytic system has been developed for the synthesis of unsymmetrical substituted alkynes via the thiosemicarbazone salicylaldiminato palladium(II)-catalyzed alkynylation couplings between arylboronic acids and alkynes or alkynyl carboxylic acids under mild conditions.  相似文献   

4.
The synthesis of complex alkyl boronic esters through conjunctive cross‐coupling of vinyl boronic esters with carboxylic acids and aryl iodides is described. The reaction proceeds under mild metallaphotoredox conditions and involves an unprecedented decarboxylative radical addition/cross‐coupling cascade of vinyl boronic esters. Excellent functional‐group tolerance is displayed, and application of a range of carboxylic acids, including secondary α‐amino acids, and aryl iodides provides efficient access to highly functionalized alkyl boronic esters. The decarboxylative conjunctive cross‐coupling was also applied to the synthesis of sedum alkaloids.  相似文献   

5.
We report a highly enantioselective catalytic protonation of bis‐silyl ketene acetals. Our method delivers α‐branched carboxylic acids, including nonsteroidal anti‐inflammatory arylpropionic acids such as Ibuprofen, in high enantiomeric purity and high yields. The process can be incorporated in an overall deracemization of α‐branched carboxylic acids, involving a double deprotonation and silylation followed by the catalytic asymmetric protonation.  相似文献   

6.
A general efficient protocol was developed for the synthesis of carboxylic acids, esters, and amides through oxidation of alkynyl boronates, generated directly from terminal alkynes. This protocol represents the first example of C(sp)−B bond oxidation. This approach displays a broad substrate scope, including aryl and alkyl alkynes, and exhibits excellent functional group tolerance. Water, primary and secondary alcohols, and amines are suitable nucleophiles for this transformation. Notably, amino acids and peptides can be used as nucleophiles, providing an efficient method for the synthesis and modification of peptides. The practicability of this methodology was further highlighted by the preparation of pharmaceutical molecules.  相似文献   

7.
A general efficient protocol was developed for the synthesis of carboxylic acids, esters, and amides through oxidation of alkynyl boronates, generated directly from terminal alkynes. This protocol represents the first example of C(sp)?B bond oxidation. This approach displays a broad substrate scope, including aryl and alkyl alkynes, and exhibits excellent functional group tolerance. Water, primary and secondary alcohols, and amines are suitable nucleophiles for this transformation. Notably, amino acids and peptides can be used as nucleophiles, providing an efficient method for the synthesis and modification of peptides. The practicability of this methodology was further highlighted by the preparation of pharmaceutical molecules.  相似文献   

8.
The propargylamine motif is not only prevalent in a wide variety of pharmaceuticals and other biologically active compounds but also utilized as a versatile building block in organic synthesis. Among the various methods for the synthesis of propargylamine derivatives, A3‐coupling represents one of the most general and attractive routes, since it offers the possibility for the construction of complex molecules from simple starting materials (amines, aldehydes, and alkynes) in one‐step with high atom economy. However, the use of volatile alkynes is the main disadvantage of this reaction. Recently, alkynyl carboxylic acids were successfully used as easily accessible and high stable surrogates for alkynes (via in situ decarboxylation) in A3‐coupling reactions. This Focus‐Review aims to give an overview of the decarboxylative A3‐coupling reactions by hoping that it will be beneficial to elicit further research in this appealing research arena. A special emphasis is placed on mechanistic aspect of reactions which may allow possible new insights into catalyst improvement.  相似文献   

9.
Carboxylic acid serving as both directing and leaving group was discovered in Ru‐catalyzed decarboxylative annulations of α‐keto acids with alkynes. The well‐established protocol showed high functional group tolerance, which provided an efficient and alternative route to the coumarone backbone.  相似文献   

10.
A dual functionalization of 1,1‐diborylalkanes through deoxygenative enolization with carboxylic acids was developed. 1,1‐Diborylalkanes were activated by MeLi to generate α‐monoboryl carbanions. In situ IR spectroscopy indicated an interaction between carboxylic acid and 1,1‐diborylalkane before addition of the activation reagent. Release of the active α‐monoboryl carbanion from the masked form was necessary for its reaction with carboxylate to afford enolate species. Electrophilic trapping of enolate species with various electrophiles achieved dual functionalization of 1,1‐diborylalkanes to afford a variety of α‐mono, di‐, and tri‐substituted ketones.  相似文献   

11.
A general method for the synthesis of α‐substituted vinyl sulfones makes use of a combination of a triazole gold complex and gallium triflate. This efficient C? S bond formation between simple terminal alkynes and sulfinic acids provides access to various α‐substituted vinyl sulfones.  相似文献   

12.
The direct α‐vinylation of carbonyl compounds to form a quaternary stereocenter is a challenging transformation. It was discovered that δ‐oxocarboxylic acids can serve as masked vinyl compounds and be unveiled by palladium‐catalyzed decarbonylative dehydration. The carboxylic acids are readily available through enantioselective acrylate addition or asymmetric allylic alkylation. A variety of α‐vinyl quaternary carbonyl compounds are obtained in good yields, and an application in the first enantioselective total synthesis of (?)‐aspewentins A, B, and C is demonstrated.  相似文献   

13.
The reactions between terminal alkynes and α‐chiral tosylhydrazones lead to the obtention of chiral pyrazoles with a stereogenic group directly attached at a nitrogen atom. The cascade reaction includes decomposition of the hydrazone into a diazocompound, 1,3‐dipolar cycloaddition of the diazo compound with the alkyne, and [1,5] sigmatropic rearrangement with migration of the stereogenic group. This strategy has been successfully applied to the synthesis of structurally diverse chiral pyrazoles through α‐chiral tosylhydrazones, obtained from α‐phenylpropionic acid, α‐amino acids, and 2‐methoxycyclohexanone. Notably, the stereoretention of the [1,5] sigmatropic rearrangements represent very rare examples of this stereospecific transformation.  相似文献   

14.
The direct α‐vinylation of carbonyl compounds to form a quaternary stereocenter is a challenging transformation. It was discovered that δ‐oxocarboxylic acids can serve as masked vinyl compounds and be unveiled by palladium‐catalyzed decarbonylative dehydration. The carboxylic acids are readily available through enantioselective acrylate addition or asymmetric allylic alkylation. A variety of α‐vinyl quaternary carbonyl compounds are obtained in good yields, and an application in the first enantioselective total synthesis of (−)‐aspewentins A, B, and C is demonstrated.  相似文献   

15.
The synthesis of all 20 common natural proteinogenic and 4 otherα‐amino acid‐isosteric α‐amino tetrazoles has been accomplished, whereby the carboxyl group is replaced by the isosteric 5‐tetrazolyl group. The short process involves the use of the key Ugi tetrazole reaction followed by deprotection chemistries. The tetrazole group is bioisosteric to the carboxylic acid and is widely used in medicinal chemistry and drug design. Surprisingly, several of the common α‐amino acid‐isosteric α‐amino tetrazoles are unknown up to now. Therefore a rapid synthetic access to this compound class and non‐natural derivatives is of high interest to advance the field.  相似文献   

16.
In recent years β‐amino acids have increased their importance enormously in defining secondary structures of β‐peptides. Interest in β‐amino acids raises the question: Why and how did nature choose α‐amino acids for the central role in life? In this article we present experimental results of MS and 31P NMR methods on the chemical behavior of N‐phosphorylated α‐alanine, β‐alanine, and γ‐amino butyric acid in different solvents. N‐Phosphoryl α‐alanine can self‐assemble to N‐phosphopeptides either in water or in organic solvents, while no assembly was observed for β‐ or γ‐amino acids. An intramolecular carboxylic–phosphoric mixed anhydride (IMCPA) is the key structure responsible for their chemical behaviors. Relative energies and solvent effects of three isomers of IMCPA derived from α‐alanine (2a–c), with five‐membered ring, and five isomers of IMCPA derived from β‐alanine (4a–e), with six‐membered ring, were calculated with density functional theory at the B3LYP/6‐31G** level. The lower relative energy (3.2 kcal/mol in water) of 2b and lower energy barrier for its formation (16.7 kcal/mol in water) are responsible for the peptide formation from N‐phosphoryl α‐alanine. Both experimental and theoretical studies indicate that the structural difference among α‐, β‐, and γ‐amino acids can be recognized by formation of IMCPA after N‐phosphorylation. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 232–241, 2003  相似文献   

17.
A new, easy, and highly enantioselective method for the synthesis of quaternary α‐alkyl‐α‐amino acids based on organocatalysis is reported. The addition of oxazolones to 1,1‐bis(phenylsulfonyl)ethylene is efficiently catalyzed by simple chiral bases or thioureas. The reaction affords α,α‐disubstituted α‐amino acid derivatives with complete C4 regioselectivity and with excellent yields and enantioselectivities. This methodology is complementary to previously reported enantioselective approaches to quaternary α‐amino acids and allows the synthesis of α‐phenyl‐α‐alkyl‐α‐amino acids and α‐tert‐butyl‐α‐alkyl‐α‐amino acids. It has distinct advantages in terms of operational simplicity, enviromentally friendly conditions, and suitability for large‐scale reactions.  相似文献   

18.
A new ruthenium 2,6-diacetylpyridine complex was synthesized and applied in the atom-economic synthesis of enol esters through Markovnikov-directed addition of carboxylic acids to terminal alkynes. The ruthenium complex [RuCl(dap)(PPh3)2]+BArF? was synthesized from [RuCl2(PPh3)2] and the corresponding ligand 2,6-diacetylpyridine (dap). The complex was characterized structurally. The new ruthenium complex was utilized under ambient conditions as a catalyst in the Markovnikov addition of carboxylic acids to terminal alkynes to afford the corresponding enol esters in 93% to 52% isolated yields (85?°C, 16?h reaction time, 1?mol% catalyst loading).  相似文献   

19.
Alkynes are an important class of organic molecules due to their utility as versatile building blocks in synthesis. Although efforts have been devoted to the difunctionalization of alkynes, general and practical strategies for the direct hydroalkylation and alkylarylation of terminal alkynes under mild reaction conditions are less explored. Herein, we report a photoredox/nickel dual‐catalyzed anti‐Markovnikov‐type hydroalkylation of terminal alkynes as well as a one‐pot arylalkylation of alkynes with alkyl carboxylic acids and aryl bromides via a three‐component cross‐coupling. The results indicate that the transformations proceed via a new mechanism involving a single‐electron transfer with subsequent energy‐transfer activation pathways. Moreover, steady‐state and time‐resolved fluorescence‐spectroscopy measurements, density functional theory (DFT) calculations, and wavefunction analysis have been performed to give an insight into the catalytic cycle.  相似文献   

20.
PdII‐catalyzed enantioselective C(sp3)?H cross‐coupling of free carboxylic acids with organoborons has been realized using either mono‐protected amino acid (MPAA) ligands or mono‐protected aminoethyl amine (MPAAM) ligands. A diverse range of aryl‐ and vinyl‐boron reagents can be used as coupling partners to provide chiral carboxylic acids. This reaction provides an alternative approach to the enantioselective synthesis of cyclopropanecarboxylic acids and cyclobutanecarboxylic acids containing α‐chiral tertiary and quaternary stereocenters. The utility of this reaction was further demonstrated by converting the carboxylic acid into cyclopropyl amine without loss of optical activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号