首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 371 毫秒
1.
Organic azides have been somewhat popularized due to their pivotal role in the emerging field of “click chemistry”. A simple approach has been used for the synthesis of uniform nano Fe‐MIL‐88B‐NH2, and a generic postsynthetic modification route has been developed for the synthesis of azide‐modified nano Fe‐MIL‐88B‐N3. The approach also has been used to synthesize the azide‐modified IRMOF‐3(‐N3). These new azide‐modified Fe‐MIL‐88B‐N3 nanocrystals hold promising potential for the applications in the fields of “click chemistry”, nanotechnology devices and nano composite membranes.  相似文献   

2.
This study presents the development of microreactor protocols for the successful continuous flow end group modification of atom transfer radical polymerization precursor polymers into azide end‐capped materials and the subsequent copper‐catalyzed azide alkyne click reactions with alkyne polymers, in flow. By using a microreactor, the reaction speed of the azidation of poly(butyl acrylate), poly(methyl acrylate), and polystyrene can be accelerated from hours to seconds and full end group conversion is obtained. Subsequently, copper‐catalyzed click reactions are executed in a flow reactor at 80 °C. Good coupling efficiencies are observed and various block copolymer combinations are prepared. Furthermore, the flow reaction can be carried out in only 40 min, while a batch procedure takes several hours to reach completion. The results indicate that the use of a continuous flow reactor for end group modifications as well as click reactions has clear benefits towards the development and improvement of well‐defined polymer materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1263–1274  相似文献   

3.
Despite the efficiency and robustness of the widely used copper‐catalyzed 1,3‐dipolar cycloaddition reaction, the use of copper as a catalyst is often not attractive, particularly for materials intended for biological systems. The use of photo‐initiated thiol‐ene as an alternative “click” reaction to synthesize “model networks” is investigated here. Poly(N‐isopropylacrylamide) precursors were synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization and were designed to have trithiocarbonate moieties as end groups. This structure design provides opportunity for subsequent end‐group modifications in preparation for thiol‐ene “click.” Two reaction routes have been proposed and studied to yield thiol and ene moieties. The advantages and disadvantages of each reaction path were investigated to propose a simple but efficient route to prepare copper‐free “click” hydrogels. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4626–4636  相似文献   

4.
Aliphatic polyesters bearing pendant alkyne groups were successfully prepared by step‐growth polymerization of different building blocks such as adipic acid and succinic acid in combination with an acetylene‐based diol, 2‐methyl‐2‐propargyl‐1,3‐propanediol, besides 1,4‐butanediol and ethylene glycol. It was demonstrated that the alkyne groups survive the high reaction temperatures (200 °C) in the presence of a radical inhibitor. The alkyne loading has been tuned by the ratio of the different monomers used, up to 25 mol % of alkyne groups. Subsequently, the alkyne groups have been reacted with azides by the copper‐catalyzed Huisgen 1,3‐dipolar cycloaddition reaction, a popular type of “click” chemistry. “Click” reactions have been performed quantitatively in the presence of benzyl azide and azide‐terminated poly(ethylene glycol), yielding brush copolymers in the latter case. Kinetic investigations about this click reaction have been performed by means of on‐line Fourier transform mid‐infrared spectroscopy, which was reported for the first time in the field of the click chemistry research. A whole range of functionalized polyesters, based on poly(ethylene succinate) and poly(butylene adipate), is available, the properties of which can be tailored by choosing the appropriate azide compound. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6552–6564, 2008  相似文献   

5.
Functional polymeric materials with desired properties can be designed by precise control of macromolecular architectures. Over the recent years, click reactions have enabled efficient synthesis of a variety of polymers with different topologies via efficient polymer–polymer conjugations. While the copper catalyzed Huisgen type (3+2) dipolar cycloaddition between azide and alkyne has been widely used toward this goal, the Diels–Alder (DA) reaction offers an alternative click reaction that allow efficient macromolecular conjugations, oftentimes without the need of any additional reagent or catalyst. This article highlights, with illustrative examples, the power of the DA “click” reaction to efficiently synthesize a variety of different well‐defined macromolecular constructs in a modular fashion. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
Fabrication and functionalization of hydrogels from well‐defined dendron‐polymer‐dendron conjugates is accomplished using sequential radical thiol‐ene “click” reactions. The dendron‐polymer conjugates were synthesized using an azide‐alkyne “click” reaction of alkene‐containing polyester dendrons bearing an alkyne group at their focal point with linear poly(ethylene glycol)‐bisazides. Thiol‐ene “click” reaction was used for crosslinking these alkene functionalized dendron‐polymer conjugates using a tetrathiol‐based crosslinker to provide clear and transparent hydrogels. Hydrogels with residual alkene groups at crosslinking sites were obtained by tuning the alkene‐thiol stoichiometry. The residual alkene groups allow efficient postfunctionalization of these hydrogel matrices with thiol‐containing molecules via a subsequent radical thiol‐ene reaction. The photochemical nature of radical thiol‐ene reaction was exploited to fabricate micropatterned hydrogels. Tunability of functionalization of these hydrogels, by varying dendron generation and polymer chain length was demonstrated by conjugation of a thiol‐containing fluorescent dye. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 926–934  相似文献   

7.
Hypoxia is an important contributing factor to the development of drug‐resistant cancer, yet few nonperturbative tools exist for studying oxygenation in tissues. While progress has been made in the development of chemical probes for optical oxygen mapping, penetration of such molecules into poorly perfused or avascular tumor regions remains problematic. A click‐assembled oxygen‐sensing (CAOS) nanoconjugate is reported and its properties demonstrated in an in vitro 3D spheroid cancer model. The synthesis relies on the sequential click‐based ligation of poly(amidoamine)‐like subunits for rapid assembly. Near‐infrared confocal phosphorescence microscopy was used to demonstrate the ability of the CAOS nanoconjugates to penetrate hundreds of micrometers into spheroids within hours and to show their sensitivity to oxygen changes throughout the nodule. This proof‐of‐concept study demonstrates a modular approach that is readily extensible to a wide variety of oxygen and cellular sensors for depth‐resolved imaging in tissue and tissue models.  相似文献   

8.
Hypoxia is an important contributing factor to the development of drug‐resistant cancer, yet few nonperturbative tools exist for studying oxygenation in tissues. While progress has been made in the development of chemical probes for optical oxygen mapping, penetration of such molecules into poorly perfused or avascular tumor regions remains problematic. A click‐assembled oxygen‐sensing (CAOS) nanoconjugate is reported and its properties demonstrated in an in vitro 3D spheroid cancer model. The synthesis relies on the sequential click‐based ligation of poly(amidoamine)‐like subunits for rapid assembly. Near‐infrared confocal phosphorescence microscopy was used to demonstrate the ability of the CAOS nanoconjugates to penetrate hundreds of micrometers into spheroids within hours and to show their sensitivity to oxygen changes throughout the nodule. This proof‐of‐concept study demonstrates a modular approach that is readily extensible to a wide variety of oxygen and cellular sensors for depth‐resolved imaging in tissue and tissue models.  相似文献   

9.
Thiol–ene “click” chemistry has emerged as a powerful strategy to construct carbon–heteroatom (C? S) bonds, which generally results in the formation of two regioisomers. To this end, the neutral ionic liquid [hmim]Br has been explored as a solvent cum catalyst for the synthesis of linear thioethers from activated and inactivated styrene derivatives or secondary benzyl alcohols and thiols without the requirement of using a metal complex, base, or free radical initiator. Furthermore, detailed mechanistic investigations using 1H NMR spectroscopy and quadrupole time‐of‐flight electrospray ionization mass spectrometry (Q‐TOF ESI‐MS) revealed that the “ambiphilic” character of the ionic liquid promotes the nucleophilic addition of thiol to styrene through an anti‐Markovnikov pathway. The catalyst recyclability and the extension of the methodology for thiol–yne click chemistry are additional benefits. A competitive study among thiophenol, styrene, and phenyl acetylene revealed that the rate of reaction is in the order of thiol–yne>thiol–ene>dimerization of thiol in [hmim]Br.  相似文献   

10.
pH‐ and temperature‐responsive poly(N‐isopropylacrylamide‐block?4‐vinylbenzoic acid) (poly(NIPAAm‐b‐VBA)) diblock copolymer brushes on silicon wafers have been successfully prepared by combining click reaction, single‐electron transfer‐living radical polymerization (SET‐LRP), and reversible addition‐fragmentation chain‐transfer (RAFT) polymerization. Azide‐terminated poly(NIPAAm) brushes were obtained by SET‐LRP followed by reaction with sodium azide. A click reaction was utilized to exchange the azide end group of a poly(NIPAAm) brushes to form a surface‐immobilized macro‐RAFT agent, which was successfully chain extended via RAFT polymerization to produce poly(NIPAAm‐b‐VBA) brushes. The addition of sacrificial initiator and/or chain‐transfer agent permitted the formation of well‐defined diblock copolymer brushes and free polymer chains in solution. The free polymer chains were isolated and used to estimate the molecular weights and polydispersity index of chains attached to the surface. Ellipsometry, contact angle measurements, grazing angle‐Fourier transform infrared spectroscopy, and X‐ray photoelectron spectroscopy were used to characterize the immobilization of initiator on the silicon wafer, poly(NIPAAm) brush formation via SET‐LRP, click reaction, and poly(NIPAAm‐b‐VBA) brush formation via RAFT polymerization. The poly(NIPAAm‐b‐VBA) brushes demonstrate stimuli‐responsive behavior with respect to pH and temperature. The swollen brush thickness of poly(NIPAAm‐b‐VBA) brush increases with increasing pH, and decreases with increasing temperature. These results can provide guidance for the design of smart materials based on copolymer brushes. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2677–2685  相似文献   

11.
A family of artificial nucleosides has been developed by applying the CuI‐catalyzed Huisgen 1,3‐dipolar cycloaddition. Starting from 2‐deoxy‐β‐D ‐glycosyl azide as a common precursor, three bidentate nucleosides have been synthesized. The 1,2,3‐triazole involved in all three nucleobases is complemented by 1,2,4‐triazole ( TriTri ), pyrazole ( TriPyr ), or pyridine ( TriPy ). Molecular structures of two metal complexes indicate that metal‐mediated base pairs of TriPyr may not be fully planar. An investigation of DNA oligonucleotide duplexes comprising the new “click” nucleosides showed that they can bind AgI to form metal‐mediated base pairs. In particular the mispair formed from TriPy and the previously established imidazole nucleoside is significantly stabilized in the presence of AgI. A comparison of different oligonucleotide sequences allowed the determination of general factors involved in the stabilization of nucleic acids duplexes with metal‐mediated base pairs.  相似文献   

12.
A highly effective and convenient “bis‐click” strategy was developed for the template‐independent circularization of single‐stranded oligonucleotides by employing copper(I)‐assisted azide–alkyne cycloaddition. Terminal triple bonds were incorporated at both ends of linear oligonucleotides. Alkynylated 7‐deaza‐2′‐deoxyadenosine and 2′‐deoxyuridine residues with different side chains were used in solid‐phase synthesis with phosphoramidite chemistry. The bis‐click ligation of linear 9‐ to 36‐mer oligonucleotides with 1,4‐bis(azidomethyl)benzene afforded circular DNA in a simple and selective way; azido modification of the oligonucleotide was not necessary. Short ethynyl side chains were compatible with the circularization of longer oligonucleotides, whereas octadiynyl residues were used for short 9‐mers. Compared with linear duplexes, circular bis‐click constructs exhibit a significantly increased duplex stability over their linear counterparts. The intramolecular bis‐click ligation protocol is not limited to DNA, but may also be suitable for the construction of other macrocycles, such as circular RNAs, peptides, or polysaccharides.  相似文献   

13.
The synthesis of ABC triblock copolymers were accomplished by Cu(0)‐catalyzed one‐pot strategy combining single electron transfer‐nitroxide radical coupling (SET‐NRC) reaction with “click” chemistry. First, the precursors α,ω‐heterofunctionalized poly(ethylene oxide) (PEO) with a 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO) group and an alkyne group, polystyrene (PS), and poly(tert‐butyl acrylate) (PtBA) with bromine or azide end group were designed and synthesized, respectively. Then, the one‐pot coupling reactions between these precursors were carried out in the system of Cu(0)/Me6TREN: The SET‐NRC reaction between bromine group and nitroxide radical group, subsequently click coupling between azide and alkyne group. It was noticeable that Cu(I) generated from Cu(0) by SET mechanism was utilized to catalyze click chemistry. To estimate the effect of Cu(0) on the one‐pot reaction, a comparative analysis was performed in presence of different Cu(0) species. The result showed that Cu(0) with more active surface area could accelerate the one‐pot reaction significantly. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
The star graft copolymers composed of hyperbranched polyglycerol (HPG) as core and well defined asymmetric mixed “V‐shaped” identical polystyrene (PS) and poly(tert‐butyl acrylate) as side chains were synthesized via the “click” chemistry. The V‐shaped side chain bearing a “clickable” alkyne group at the conjunction point of two blocks was first prepared through the combination of anionic polymerization of styrene (St) and atom transfer radical polymerization of tert‐butyl acrylate (tBA) monomer, and then “click” chemistry was conducted between the alkyne groups on the side chains and azide groups on HPG core. The obtained star graft copolymers and intermediates were characterized by gel permeation chromatography (GPC), GPC equipped with a multiangle laser‐light scattering detector (GPC‐MALLS), nuclear magnetic resonance spectroscopy and fourier transform infrared. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1308–1316, 2009  相似文献   

15.
Well‐defined ABCD 4‐Miktoarm star‐shaped quarterpolymers of [poly(styrene)‐poly(tert‐butyl acrylate)‐poly(ethylene oxide)‐poly(isoprene)] [star(PS‐PtBA‐PEO‐PI)] were successfully synthesized by the combination of the “click” chemistry and multiple polymerization mechanism. First, the poly(styryl)lithium (PS?Li+) and the poly(isoprene)lithium (PI?Li+) were capped by ethoxyethyl glycidyl ether (EEGE) to form the PS and PI with both an active ω‐hydroxyl group and an ω′‐ethoxyethyl‐protected hydroxyl group, respectively. After these two hydroxyl groups were selectively modified to propargyl and 2‐bromoisobutyryl group for PS, the resulted PS was used as macroinitiator for ATRP of tBA monomer and the diblock copolymer PS‐b‐PtBA with a propargyl group at the junction point was achieved. Then, using the functionalized PI as macroinitiator for ROP of EO monomer and bromoethane as blocking agent, the diblock copolymer PI‐b‐PEO with a protected hydroxyl group at the conjunction point was synthesized. After the hydrolysis, the recovered hydroxyl group of PI‐b‐PEO was modified to bromoacetyl and then azide group successively. Finally, the “click” chemistry between them was proceeded smoothly. The obtained star‐shaped quarterpolymers and intermediates were characterized by 1H NMR, FT‐IR, and SEC in detail. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2154–2166, 2008  相似文献   

16.
A large family of bifunctional 1,2,3‐triazole derivatives that contain both a polyethylene glycol (PEG) chain and another functional fragment (e.g., a polymer, dendron, alcohol, carboxylic acid, allyl, fluorescence dye, redox‐robust metal complex, or a β‐cyclodextrin unit) has been synthesized by facile “click” chemistry and mildly coordinated to nanogold particles, thus providing stable water‐soluble gold nanoparticles (AuNPs) in the size range 3.0–11.2 nm with various properties and applications. In particular, the sensing properties of these AuNPs are illustrated through the detection of an analogue of a warfare agent (i.e., sulfur mustard) by means of a fluorescence “turn‐on” assay, and the catalytic activity of the smallest triazole–AuNPs (core of 3.0 nm) is excellent for the reduction of 4‐nitrophenol in water.  相似文献   

17.
Click Cu(I)‐catalyzed polymerizations of diynes that contained ester linkages and diazides were performed to produce polyesters (click polyesters) of large molecular weights [(~1.0–7.0 ) × 104], that contained main‐chain 1,4‐disubstitued triazoles in excellent yields. Incorporation of triazole improved the thermal properties and magnified the even‐odd effect of the methylene chain length. We also found that, by changing the positions of the triazole rings, the thermal properties of the polyesters could be controlled. The use of in situ azidation was a safe reaction, as explosive diazides are not used. In addition, the microwave heating was found to accelerate the polymerization rates. This is the first study that has applied click chemistry for the synthesis of a series of polyesters. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4207–4218, 2010  相似文献   

18.
Post‐polymerization modification (PPM) of polymers is extremely beneficial in terms of designing brand new synthetic pathways toward functional complex polymers. Fortunately, the new developments in the field of organic chemistry along with controlled/living radical polymerization (CLRP) techniques have enabled scientists to readily design and synthesize the functionalized‐polymers for wide range of applications via the PPM. In this regard, the reactivity of para‐fluorine atom in the fluorinated aromatic structures toward the nucleophilic substitution reactions has made the polymers possessing this group to become a very strong candidate that can undergo efficient PPM. Besides, it has been proven that the thiol‐functionalized compounds react with the para‐fluorine atom of the pentafluorophenyl group more rapidly and efficiently than the amine‐ and the hydroxyl‐functionalized compounds. Furthermore, the milder experimental conditions to achieve quantitative conversions have led to the reaction between the thiol and the structures possessing pentafluorophenyl groups to be referred to as a click‐type reaction. Given this information, this review article aims to present the scientific developments regarding the thiol‐para‐fluoro “click” (TPF‐click) chemistry, and its impact on PPM to construct novel polymeric structures. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1181–1198  相似文献   

19.
1,3‐Dipolar cycloaddition of an organic azide and an acetylenic unit, often referred to as the “click reaction”, has become an important ligation tool both in the context of materials chemistry and biology. Thus, development of simple approaches to directly generate polymers that bear either an azide or an alkyne unit has gained considerable importance. We describe here a straightforward approach to directly prepare linear and hyperbranched polyesters that carry terminal propargyl groups. To achieve the former, we designed an AB‐type monomer that carries a hydroxyl group and a propargyl ester, which upon self‐condensation under standard transesterification conditions yielded a polyester that carries a single propargyl group at one of its chain‐ends. Similarly, an AB2 type monomer that carries one hydroxyl group and two propargyl ester groups, when polymerized under the same conditions yielded a hyperbranched polymer with numerous “clickable” propargyl groups at its molecular periphery. These propargyl groups can be readily clicked with different organic azides, such as benzyl azide, ω‐azido heptaethyleneglycol monomethylether or 9‐azidomethyl anthracene. When an anthracene chromophore is clicked, the molecular weight of the linear polyester could be readily estimated using both UV–visible and fluorescence spectroscopic measurements. Furthermore, the reactive propargyl end group could also provide an opportunity to prepare block copolymers in the case of linear polyesters and to generate nanodimensional scaffolds to anchor a variety of functional units, in the case of the hyperbranched polymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3200–3208, 2010  相似文献   

20.
The development of a novel nucleophilic thio‐bromo “Click” reaction, specifically base‐mediated thioetherification of thioglycerol with α‐bromoesters, is reported. Combination of this thio‐bromo click reaction with subsequent acylation with 2‐bromopropionyl bromide provides an iterative two‐step divergent growth approach to the synthesis of a new class of poly(thioglycerol‐2‐propionate) (PTP) dendrimers. This approach is demonstrated in the rapid preparation of four generation (G1–G4) of PTP dendrimers with high‐structural fidelity. The isolated G1–G4 bromide‐terminated dendrimers can be used directly as dendritic macroinitiators for the synthesis of star‐polymers via SET‐LRP. Additionally, the intermediate hydroxy‐terminated dendrimers are analogs of other water‐soluble polyester and polyether dendrimers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3931–3939, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号