首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The bioorthogonal cleavage of allylic carbamates from trans‐cyclooctene (TCO) upon reaction with tetrazine is widely used to release amines. We disclose herein that this reaction can also cleave TCO esters, carbonates, and surprisingly, ethers. Mechanistic studies demonstrated that the elimination is mainly governed by the formation of the rapidly eliminating 1,4‐dihydropyridazine tautomer, and less by the nature of the leaving group. In contrast to the widely used p‐aminobenzyloxy linker, which affords cleavage of aromatic but not of aliphatic ethers, the aromatic, benzylic, and aliphatic TCO ethers were cleaved as efficiently as the carbamate, carbonate, and esters. Bioorthogonal ether release was demonstrated by the rapid uncaging of TCO‐masked tyrosine in serum, followed by oxidation by tyrosinase. Finally, tyrosine uncaging was used to chemically control cell growth in tyrosine‐free medium.  相似文献   

2.
Recent advances in bioorthogonal catalysis are increasing the capacity of researchers to manipulate the fate of molecules in complex biological systems. A bioorthogonal uncaging strategy is presented, which is triggered by heterogeneous gold catalysis and facilitates the activation of a structurally diverse range of therapeutics in cancer cell culture. Furthermore, this solid‐supported catalytic system enabled locally controlled release of a fluorescent dye into the brain of a zebrafish for the first time, offering a novel way to modulate the activity of bioorthogonal reagents in the most fragile and complex organs.  相似文献   

3.
Transition metal catalysts (TMCs) mediated bioorthogonal uncaging catalysis has sparked increasing interest in prodrug activation. However, due to their “always-on” catalytic activity as well as the complex and catalytic-detrimental intracellular environment, the biosafety and therapeutic efficiency of TMCs are unsatisfactory. Herein, a DNA-gated and self-protected bioorthogonal catalyst has been designed by modifying nanozyme-Pd0 with highly programmable nucleic acid (DNA) molecules to achieve efficient intracellular drug synthesis for cancer therapy. Monolayer DNA molecules could endow the catalyst with targeting and perform as a gatekeeper to achieve selective prodrug activation within cancer cells. Meanwhile, the prepared graphitic nitrogen-doped carbon nanozyme with glutathione peroxidase (GPx) and catalase (CAT)-like activities could improve the catalytic-detrimental intracellular environment to prevent the catalyst from being inactivated and sensitize the subsequent chemotherapy. Overall, we believe that our work will promote the development of secure and efficient bioorthogonal catalytic systems and provide new insights into novel antineoplastic platforms.  相似文献   

4.
We successfully introduced two‐photon‐sensitive photolabile groups ([7‐(diethylamino)coumarin‐4‐yl]methyl and p‐dialkylaminonitrobiphenyl) into DNA strands and demonstrated their suitability for three‐dimensional photorelease. To visualize the uncaging, we used a fluorescence readout based on double‐strand displacement in a hydrogel and in neurons. Orthogonal two‐photon uncaging of the two cages is possible, thus enabling complex scenarios of three‐dimensional control of hybridization with light.  相似文献   

5.
Over the past two decades, bioorthogonal chemistry has become a preferred tool to achieve site‐selective modifications of proteins. However, there are only a handful of commonly applied bioorthogonal reactions and they display some limitations, such as slow rates, use of unstable or cytotoxic reagents, and side reactions. Hence, there is significant interest in expanding the bioorthogonal chemistry toolbox. In this regard, boronic acids have recently been introduced in bioorthogonal chemistry and are exploited in three different strategies: 1) boronic ester formation between a boronic acid and a 1,2‐cis diol; 2) iminoboronate formation between 2‐acetyl/formyl‐arylboronic acids and hydrazine/hydroxylamine/semicarbazide derivatives; 3) use of boronic acids as transient groups in a Suzuki–Miyaura cross‐coupling or other reactions that leave the boronyl group off the conjugation product. In this Review, we summarize progress made in the use of boronic acids in bioorthogonal chemistry to enable site‐selective labeling of proteins and compare these methods with the most commonly utilized bioorthogonal reactions.  相似文献   

6.
The bioorthogonal inverse‐electron‐demand Diels–Alder (IEDDA) cleavage reaction between tetrazine and trans‐cyclooctene (TCO) is a powerful way to control the release of bioactive agents and imaging probes. In this study, a pretargeted activation strategy using single‐walled carbon nanotubes (SWCNTs) that bear tetrazines (TZ@SWCNTs) and a TCO‐caged molecule was used to deliver active effector molecules. To optimize a turn‐on signal by using in vivo fluorescence imaging, we developed a new fluorogenic near‐infrared probe that can be activated by bioorthogonal chemistry and image tumours in mice by caging hemicyanine with TCO (tHCA). With our pretargeting strategy, we have shown selective doxorubicin prodrug activation and instantaneous fluorescence imaging in living cells. By combining a tHCA probe and a pretargeted bioorthogonal approach, real‐time, non‐invasive tumour visualization with a high target‐to‐background ratio was achieved in a xenograft mice tumour model. The combined advantages of enhanced stability, kinetics and biocompatibility, and the superior pharmacokinetics of tetrazine‐functionalised SWCNTs could allow application of targeted bioorthogonal decaging approaches with minimal off‐site activation of fluorophore/drug.  相似文献   

7.
We have developed a series of new ultrafluorogenic probes in the blue‐green region of the visible‐light spectrum that display fluorescence enhancement exceeding 11 000‐fold. These fluorogenic dyes integrate a coumarin fluorochrome with the bioorthogonal trans‐cyclooctene(TCO)–tetrazine chemistry platform. By exploiting highly efficient through‐bond energy transfer (TBET), these probes exhibit the highest brightness enhancements reported for any bioorthogonal fluorogenic dyes. No‐wash, fluorogenic imaging of diverse targets including cell‐surface receptors in cancer cells, mitochondria, and the actin cytoskeleton is possible within seconds, with minimal background signal and no appreciable nonspecific binding, opening the possibility for in vivo sensing.  相似文献   

8.
Bioorthogonal catalysis mediated by Pd-based transition metal catalysts has sparked increasing interest in combating diseases. However, the catalytic and therapeutic efficiency of current Pd0 catalysts is unsatisfactory. Herein, inspired by the concept that ligands around metal sites could enable enzymes to catalyze astonishing reactions by changing their electronic environment, a LM-Pd catalyst with liquid metal (LM) as an unusual modulator has been designed to realize efficient bioorthogonal catalysis for tumor inhibition. The LM matrix can serve as a “ligand” to afford an electron-rich environment to stabilize the active Pd0 and promote nucleophilic turnover of the π-allylpalladium species to accelerate the uncaging process. Besides, the photothermal properties of LM can lead to the enhanced removal of tumor cells by photo-enhanced catalysis and photothermal effect. We believe that our work will broaden the application of LM and motivate the design of bioinspired bioorthogonal catalysts.  相似文献   

9.
We herein report a chemical decaging strategy for the in situ generation of neuramic acid (Neu), a unique type of sialic acid, on live cells by the use of a palladium‐mediated bioorthogonal elimination reaction. Palladium nanoparticles (Pd NPs) were found to be a highly efficient and biocompatible depropargylation catalyst for the direct conversion of metabolically incorporated N‐(propargyloxycarbonyl)neuramic acid (Neu5Proc) into Neu on cell‐surface glycans. This conversion chemically mimics the enzymatic de‐N‐acetylation of N‐acetylneuramic acid (Neu5Ac), a proposed mechanism for the natural occurrence of Neu on cell‐surface glycans. The bioorthogonal elimination was also exploited for the manipulation of cell‐surface charge by unmasking the free amine at C5 to neutralize the negatively charged carboxyl group at C1 of sialic acids.  相似文献   

10.
Bioorthogonal reactions are widely used for the chemical modification of biomolecules. The application of vinylboronic acids (VBAs) as non‐strained, synthetically accessible and water‐soluble reaction partners in a bioorthogonal inverse electron‐demand Diels–Alder (iEDDA) reaction with 3,6‐dipyridyl‐s‐tetrazines is described. Depending on the substituents, VBA derivatives give second‐order rate constants up to 27 m −1 s−1 in aqueous environments at room temperature, which is suitable for biological labeling applications. The VBAs are shown to be biocompatible, non‐toxic, and highly stable in aqueous media and cell lysate. Furthermore, VBAs can be used orthogonally to the strain‐promoted alkyne–azide cycloaddition for protein modification, making them attractive complements to the bioorthogonal molecular toolbox.  相似文献   

11.
Bioorthogonal reactions are widely used for the chemical modification of biomolecules. The application of vinylboronic acids (VBAs) as non‐strained, synthetically accessible and water‐soluble reaction partners in a bioorthogonal inverse electron‐demand Diels–Alder (iEDDA) reaction with 3,6‐dipyridyl‐s‐tetrazines is described. Depending on the substituents, VBA derivatives give second‐order rate constants up to 27 m ?1 s?1 in aqueous environments at room temperature, which is suitable for biological labeling applications. The VBAs are shown to be biocompatible, non‐toxic, and highly stable in aqueous media and cell lysate. Furthermore, VBAs can be used orthogonally to the strain‐promoted alkyne–azide cycloaddition for protein modification, making them attractive complements to the bioorthogonal molecular toolbox.  相似文献   

12.
Bioorthogonal control of metal‐ion sensors for imaging metal ions in living cells is important for understanding the distribution and fluctuation of metal ions. Reported here is the endogenous and bioorthogonal activation of a DNAzyme fluorescent sensor containing an 18‐base pair recognition site of a homing endonuclease (I‐SceI), which is found by chance only once in 7×1010 bp of genomic sequences, and can thus form a near bioorthogonal pair with I‐SceI for DNAzyme activation with minimal effect on living cells. Once I‐SceI is expressed inside cells, it cleaves at the recognition site, allowing the DNAzyme to adopt its active conformation. The activated DNAzyme sensor is then able to specifically catalyze cleavage of a substrate strand in the presence of Mg2+ to release the fluorophore‐labeled DNA fragment and produce a fluorescent turn‐on signal for Mg2+. Thus I‐SceI bioorthogonally activates the 10–23 DNAzyme for imaging of Mg2+ in HeLa cells.  相似文献   

13.
A bioorthogonal ligation and cleavage method via reactions of chloroquinoxalines (CQ) and ortho‐dithiophenols (DT) is presented. Double nucleophilic substitutions of ortho‐dithiophenols to chloroquinoxalines provide conjugates containing tetracyclic benzo[5,6][1,4]dithiino[2,3‐b]quinoxaline with strong built‐in fluorescence together with release of the other functional molecules. Three cleavable linkers were designed and successfully used in release of the molecules containing biotin from the protein conjugates. The CQ‐DT bioorthogonal reactions can be applied for the bioorthogonal ligations, bioorthogonal cleavages, and trans‐tagging of proteins, and show advantages of readily accessible unnatural orthogonal groups, appealing reaction kinetics (k2≈1.3 m ?1 s?1), excellent biocompatibility of orthogonal groups, and high stability of conjugates. This complements previous bioorthogonal reactions and is a new route for protein‐fishing applications and in‐gel fluorescence analysis.  相似文献   

14.
Tandem uncaging systems in which a two‐photon absorbing module and a cage moiety, linked via a phosphorous clip, that act together by Förster resonance energy transfer (FRET) have been developed. A library of these compounds, using different linkers and cages (7‐nitroindolinyl or nitroveratryl) has been synthesized. The investigation of their uncaging and two‐photon absorption properties demonstrates the scope and versatility of the engineering strategy towards efficient two‐photon cages and reveals surprising cooperative and topological effects. The interactions between the 2PA module and the caging moiety are found to promote cooperative effects on the 2PA response while additional processes that enhance the uncaging efficiency are operative in well‐oriented nitroindoline‐derived dyads. These synergic effects combine to lead to record two‐photon uncaging cross‐section values (i.e., up to 20 GM) for uncaging of carboxylic acids.  相似文献   

15.
The development of bioorthogonal reactions has classically focused on bond‐forming ligation reactions. In this report, we seek to expand the functional repertoire of such transformations by introducing a new bond‐cleaving reaction between N‐oxide and boron reagents. The reaction features a large dynamic range of reactivity, showcasing second‐order rate constants as high as 2.3×103 M ?1 s?1 using diboron reaction partners. Diboron reagents display minimal cell toxicity at millimolar concentrations, penetrate cell membranes, and effectively reduce N‐oxides inside mammalian cells. This new bioorthogonal process based on miniscule components is thus well‐suited for activating molecules within cells under chemical control. Furthermore, we demonstrate that the metabolic diversity of nature enables the use of naturally occurring functional groups that display inherent biocompatibility alongside abiotic components for organism‐specific applications.  相似文献   

16.
《化学:亚洲杂志》2018,13(14):1791-1796
The development of highly efficient bioorthogonal reactions is of paramount importance for the research fields of biomaterials and chemical biology. We found that the o,o′‐difluorinated aromatic azide was able to react with triphenylphosphine to produce water‐stable phosphanimine. To further improve the efficiency of this kind of nonhydrolysis Staudinger reaction, a tetrafluorinated aromatic azide was employed to develop a faster nonhydrolysis Staudinger reaction with a rate of up to 51 m −1 s−1, as revealed by high‐performance liquid chromatography (HPLC) analysis and fluorescence kinetics. As a proof‐of‐concept study, the highly efficient Staudinger reaction was successfully used for chemoselective fluorescence labeling of proteins and nucleic acids (DNA and RNA) as well as for protein polyethyleneglycol (PEG)ylation. We believe that this bioorthogonal reaction can provide a broadly useful tool for various bioconjugations.  相似文献   

17.
Uncaging strategies that use near‐infrared wavelengths can enable the highly targeted delivery of biomolecules in complex settings. Many methods, including an approach we developed using cyanine photooxidation, are limited to phenol‐containing payloads. Given the critical role of amines in diverse biological processes, we sought to use cyanine photooxidation to initiate the release of aryl amines. Heptamethine cyanines substituted with an aryl amine at the C4′ position undergo only inefficient release, likely due electronic factors. We then pursued the hypothesis that the carbonyl products derived from cyanine photooxidation could undergo efficient β‐elimination. After examining both symmetrical and unsymmetrical scaffolds, we identify a merocyanine substituted with indolenine and coumarin heterocycles that undergoes efficient photooxidation and aniline uncaging. In total, these studies provide a new scheme—cyanine photooxidation followed by β‐elimination—through which to design photocages with efficient uncaging properties.  相似文献   

18.
MRI offers high spatial resolution with excellent tissue penetration but it has limited sensitivity and the commonly administered contrast agents lack specificity. In this study, two sets of iron oxide nanoparticles (IONPs) were synthesized that were designed to selectively undergo copper‐free click conjugation upon sensing of matrix metalloproteinase (MMP) enzymes, thereby leading to a self‐assembled superparamagnetic nanocluster network with T2 signal enhancement properties. For this purpose, IONPs with bioorthogonal azide and alkyne surfaces masked by polyethylene glycol (PEG) layers tethered to CXCR4‐targeted peptide ligands were synthesized and characterized. The IONPs were tested in vitro and T2 signal enhancements of around 160 % were measured when the IONPs were incubated with cells expressing MMP2/9 and CXCR4. Simultaneous systemic administration of the bioorthogonal IONPs in tumor‐bearing mice demonstrated the signal‐enhancing ability of these ‘smart’ self‐assembling nanomaterials.  相似文献   

19.
The Diels–Alder reaction with inverse electron demand (DAinv reaction) of 1,2,4,5‐tetrazines with electron rich or strained alkenes was proven to be a bioorthogonal ligation reaction that proceeds fast and with high yields. An important application of the DAinv reaction is metabolic oligosaccharide engineering (MOE) which allows the visualization of glycoconjugates in living cells. In this approach, a sugar derivative bearing a chemical reporter group is metabolically incorporated into cellular glycoconjugates and subsequently derivatized with a probe by means of a bioorthogonal ligation reaction. Here, we investigated a series of new mannosamine and glucosamine derivatives with carbamate‐linked side chains of varying length terminated by alkene groups and their suitability for labeling cell‐surface glycans. Kinetic investigations showed that the reactivity of the alkenes in DAinv reactions increases with growing chain length. When applied to MOE, one of the compounds, peracetylated N‐butenyloxycarbonylmannosamine, was especially well suited for labeling cell‐surface glycans. Obviously, the length of its side chain represents the optimal balance between incorporation efficiency and speed of the labeling reaction. Sialidase treatment of the cells before the bioorthogonal labeling reaction showed that this sugar derivative is attached to the glycans in form of the corresponding sialic acid derivative and not epimerized to another hexosamine derivative to a considerable extent.  相似文献   

20.
Recently, metabolic glycoengineering with bioorthogonal click reactions has focused on improving the tumor targeting efficiency of nanoparticles as delivery vehicles for anticancer drugs or imaging agents. It is the key technique for developing tumor‐specific metabolic precursors that can generate unnatural glycans on the tumor‐cell surface. A cathepsin B‐specific cleavable substrate (KGRR) conjugated with triacetylated N‐azidoacetyl‐d ‐mannosamine (RR‐S‐Ac3ManNAz) was developed to enable tumor cells to generate unnatural glycans that contain azide groups. The generation of azide groups on the tumor cell surface was exogenously and specifically controlled by the amount of RR‐S‐Ac3ManNAz that was fed to target tumor cells. Moreover, unnatural glycans on the tumor cell surface were conjugated with near infrared fluorescence (NIRF) dye‐labeled molecules by a bioorthogonal click reaction in cell cultures and in tumor‐bearing mice. Therefore, our RR‐S‐Ac3ManNAz is promising for research in tumor‐specific imaging or drug delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号