首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fuel‐driven self‐assemblies are gaining ground for creating autonomous systems and materials, whose temporal behavior is preprogrammed by a reaction network. However, up to now there has been a lack of simple external control mechanisms of the transient behavior, at best using remote and benign light control. Even more challenging is to use different wavelengths to modulate the reactivity of different components of the system, for example, as fuel or building blocks. Success would enable such systems to navigate along different trajectories in a wavelength‐dependent fashion. Herein, we introduce the first examples of light control in ATP‐fueled, dynamic covalent DNA polymerization systems organized in an enzymatic reaction network of concurrent ATP‐powered ligation and restriction. We demonstrate concepts for light activation and modulation by introducing caged ATP derivatives and caged DNA building blocks, making it possible to realize light‐activated fueling, self‐sorting in structure and behavior, and transition across different wavelength‐dependent dynamic steady states.  相似文献   

2.
Rational design of organic 2D (O2D) materials has made some progress, but it is still in its infancy. A class of self‐assembling small molecules is presented that form nano/microscale supramolecular 2D materials in aqueous media. A judicial combination of four different intermolecular interactions forms the basis for the robust formation of these ultrathin assemblies. These assemblies can be programmed to disassemble in response to a specific protein and release its non‐covalently bound guest molecules.  相似文献   

3.
Self‐assembled materials, which are able to respond to external stimuli, have been extensively studied over the last decades. A particularly exciting stimulus for a wide range of biomedical applications is the pH value of aqueous solutions, since deprotonation‐protonation events are crucial for structural and functional properties of biopolymers. In living cells and tissues, intra‐ and extracellular pH values are stringently regulated, but can deviate from pH neutral as observed for example in tumorous, inflammatory sites, in endocytic pathways, and specific cellular compartments. By using a pH‐switch as a stimulus, it is thereby possible to address specific targets in order to cause a programmed response of the supramolecular material. This strategy has not only been successfully applied in fundamental research but also in clinical studies. In this feature article, current strategies that have been used in order to design materials with pH‐responsive properties are illustrated. This discussion only addresses selected examples from the last four years, the self‐assembly of polymer‐based building blocks, assemblies emerging from small molecules including surfactants or derived from biological macromolecules, and finally the controlled self‐assembly of oligopeptides.

  相似文献   


4.
Despite the remarkable progress made in controllable self‐assembly of stimuli‐responsive supramolecular polymers (SSPs), a basic issue that has not been consideration to date is the essential binding site. The noncovalent binding sites, which connect the building blocks and endow supramolecular polymers with their ability to respond to stimuli, are expected to strongly affect the self‐assembly of SSPs. Herein, the design and synthesis of a dual‐stimuli thermo‐ and photoresponsive Y‐shaped supramolecular polymer (SSP2) with two adjacent β‐cyclodextrin/azobenzene (β‐CD/Azo) binding sites, and another SSP (SSP1) with similar building blocks, but only one β‐CD/Azo binding site as a control, are described. Upon gradually increasing the polymer solution temperature or irradiating with UV light, SSP2 self‐assemblies with a higher binding‐site distribution density; exhibits a flower‐like morphology, smaller size, and more stable dynamic aggregation process; and greater controllability for drug‐release behavior than those observed with SSP1 self‐assemblies. The host–guest binding‐site‐tunable self‐assembly was attributed to the positive cooperativity generated among adjacent binding sites on the surfaces of SSP2 self‐assemblies. This work is beneficial for precisely controlling the structural parameters and controlled release function of SSP self‐assemblies.  相似文献   

5.
In the 21st century, soft materials will become more important as functional materials because of their dynamic nature. Although soft materials are not as highly durable as hard materials, such as metals, ceramics, and engineering plastics, they can respond well to stimuli and the environment. The introduction of order into soft materials induces new dynamic functions. Liquid crystals are ordered soft materials consisting of self‐organized molecules and can potentially be used as new functional materials for electron, ion, or molecular transporting, sensory, catalytic, optical, and bio‐active materials. For this functionalization, unconventional materials design is required. Herein, we describe new approaches to the functionalization of liquid crystals and show how the design of liquid crystals formed by supramolecular assembly and nano‐segregation leads to the formation of a variety of new self‐organized functional materials.  相似文献   

6.
Easy access to discrete nanoclusters in metal‐folded single‐chain nanoparticles (metal‐SCNPs) and independent ultrafine sudomains in the assemblies via coordination‐driven self‐assembly of hydrophilic copolymer containing 9% imidazole groups is reported herein. 1H NMR, dynamic light scattering, and NMR diffusion‐ordered spectroscopy results demonstrate self‐assembly into metal‐SCNPs (>70% imidazole‐units folded) by neutralization in the presence of Cu(II) in water to pH 4.6. Further neutralization induces self‐assembly of metal‐SCNPs (pH 4.6–5.0) and shrinkage (pH 5.0–5.6), with concurrent restraining residual imidazole motifs and hydrophilic segment, which organized into constant nanoparticles over pH 5.6–7.5. Atomic force microscopy results evidence discrete 1.2 nm nanoclusters and sub‐5‐nm subdomains in metal‐SCNP and assembled nanoparticle. Reduction of metal center using sodium ascorbate induces structural rearrangement to one order lower than the precursor. Enzyme mimic catalysis required media‐tunable discrete ultrafine interiors in metal‐SCNPs and assemblies have hence been achieved.  相似文献   

7.
Naturally occurring systems have the ability to self‐regulate, which plays a key role in their structural and functional adaptation. The autonomous behavior in living systems is biocatalytically controlled by the continuous consumption of energy to remain in a non‐equilibrium condition. In this work, we show the construction of a self‐regulated “breathing” microgel that uses chemical fuels to keep the system in the out‐of‐equilibrium state. The enzyme urease is utilized to program a feedback‐induced pH change, which in turn tunes the size switch and fluorescence intensity of the microgel. A continuous supply of chemical fuels to the system allows the process to be reversible. This microgel with tunable autonomous properties provides insights into the design of artificial systems and dynamic soft materials.  相似文献   

8.
Histidine functional block copolymers are thermally self‐assembled into polymer micelles with poly‐N‐isopropylacrylamide in the core and the histidine functionality in the corona. The thermally induced self‐assemblies are reversible until treated with Cu2+ ions at 50 °C. Upon treatment with 0.5 equivalents of Cu2+ relative to the histidine moieties, metal‐ion coordination locks the self‐assemblies. The self‐assembly behavior of histidine functional block copolymers is explored at different values of pH using DLS and 1H NMR. Metal‐ion coordination locking of the histidine functional micelles is also explored at different pH values, with stable micelles forming at pH 9, observed by DLS and imaged by atomic force microscopy. The thermal self‐assembly of glycine functional block copolymers at pH 5, 7, and 9 is similar to the histidine functional materials; however, the self‐assemblies do not become stable after the addition of Cu2+, indicating that the imidazole plays a crucial role in metal‐ion coordination that locks the micelles. The reversibility of the histidine‐copper complex locking mechanism is demonstrated by the addition of acid to protonate the imidazole and destabilize the polymer self‐assemblies. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1964–1973  相似文献   

9.
Supramolecular functional materials able to respond to external stimuli have several advantages over their classical covalent counterparts. The preparation of soft actuators with the ability to respond to external stimuli in a spatiotemporal fashion, to self‐repair, and to show directional motion, is currently one of the most challenging research goals. Herein, we report a series of metallopolymers based on zinc(II)–terpyridine coordination nodes and bearing photoisomerizable diazobenzene units and/or solubilizing luminescent phenylene–ethynylene moieties. These supramolecular polymers act as powerful gelating agents at low critical gelation concentrations. The resulting multiresponsive organogels display light‐triggered mechanical actuation and luminescent properties. Furthermore, owing to the presence of dynamic coordinating bonds, they show self‐healing abilities.  相似文献   

10.
《化学:亚洲杂志》2017,12(19):2549-2553
The design of tunable dynamic self‐assembly of nanoparticles with switchable assembled dimensions and morphologies is a challenging goal whose realization is vital for the evolution of smart nanomaterials. Herein, we report on chitosan polymer as an effective supramolecular “glue” for aldehyde‐modified Au nanoparticles to reversibly modulate the states of self‐assembled nanocomposites. By simultaneous integration of dynamic covalent Schiff base interactions and noncovalent hydrogen bonds, the chitosan/Au nanocomposites could reversibly transform their assembled morphologies from one‐dimensional nanowires to three‐dimensional nanosponges in response to the variation of pH value. Moreover, the obtained nanosponges could be used as an efficient pH‐controlled cargo release system.  相似文献   

11.
Reactions coupled self‐assembly represents a step forward towards biomimetic behavior in the field of supramolecular research. Here, two pH‐dependent reactions of thiol‐disulfide exchange and ligand exchange were used to couple with the self‐assembly of an AuI‐thiolate coordination polymer consisting of two ligands. Thanks to the comparable rates between the reactions and self‐assembly, the compositions of the assemblies change continuously with time, resulting in a highly dynamic assembly process and spatially inhomogeneous structure that are very common in life systems but cannot be easily obtained with one‐pot artificial methods.  相似文献   

12.
Summary: A highly asymmetric P2VP58‐PAA924‐PBMA48 double hydrophilic block terpolymer exhibits a rich phase behavior as a function of pH. In acidic media (pH 1) three compartment micelles with a positively charged outer corona are formed. At high pH, the above structure is transformed into a three‐dimensional transient network constituted of hydrophobic domains interconnected with negatively charged bridging chains (PAA chains). At even higher pH (14) the network is disrupted and finally exhibits a closed loop sol–gel–sol behavior.

AFM images of P2VP58‐PAA924‐PBMA48 micellar self assemblies deposited on mica.  相似文献   


13.
An ultra‐short peptide Boc‐L ‐Phe‐L ‐Lys(Z)‐OMe (Z=carbobenzyloxy) was shown to act as a highly efficient and versatile low molecular weight gelator (LMWG) for a variety of aliphatic and aromatic solvents under sonication. Remarkably, this simple dipeptide is not only able to form coiled fibres but also demonstrates self‐healing and thermal chiroptical switching behaviour. The formation of coiled assemblies was found to be influenced by the nature of the solvent and the presence of an additive. By exploiting these properties it was possible to modulate the macroscopic and microscopic properties of the organogels of this ultra‐short peptide, allowing the formation of highly ordered single‐domain networks of helical fibres with dimeric or alternatively fibre‐bundle morphology. The organogels were characterized by using FTIR, SEM, NMR and circular dichroism (CD) spectroscopy. Interestingly, CD experiments showed that the organogels of Boc‐L ‐Phe‐L ‐Lys(Z)‐OMe in aromatic solvents exhibit thermal chiroptical switching. This behaviour was hypothesized to stem from changes in the morphology of the gel accompanied by conformational transformation of the gelling agent. The fact that such a small peptide can demonstrate hierarchical assemblies and the possibility of controlling the self‐association is rather intriguing. The self‐healing ability, chiroptical switching and more importantly the formation of helical assemblies by Boc‐L ‐Phe‐L ‐Lys(Z)‐OMe under sonication, make this dipeptide an interesting example of the self‐assembly ability of ultra‐short peptides.  相似文献   

14.
Despite the availability of numerous two‐dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale‐ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of assemblies in different dimensions to achieve 2D conducting polymer nanosheets with structural ordering at the mesoscale. The supramolecular assemblies of amphipathic perfluorinated carboxylic acids and block co‐polymers serve as 2D interfaces and meso‐inducing moieties, respectively, which guide the polymerization of aniline into 2D, free‐standing mesoporous conducting polymer nanosheets. Grazing‐incidence small‐angle X‐ray scattering combined with various microscopy demonstrates that the resulting mesoscale‐ordered nanosheets have hexagonal lattice with d‐spacing of about 30 nm, customizable pore sizes of 7–18 nm and thicknesses of 13–45 nm, and high surface area. Such template‐directed assembly produces polyaniline nanosheets with enhanced π–π stacking interactions, thereby resulting in anisotropic and record‐high electrical conductivity of approximately 41 S cm?1 for the pristine polyaniline nanosheet based film and approximately 188 S cm?1 for the hydrochloric acid‐doped counterpart. Our moldable approach creates a new family of mesoscale‐ordered structures as well as opens avenues to the programmed assembly of multifunctional materials.  相似文献   

15.
Block copolymer (BCP) self‐assembly is a versatile technique in the preparation of polymeric aggregates with varieties of morphologies. However, its morphology library is limited. Here, the discovery of pincushion of tubules is reported for the first time, via BCP self‐assembly of poly(4‐vinylpyridine)‐b‐polystyrene (P4VP‐b‐PS) with very high molecular weight (500 kDa) and asymmetry (2 mol% P4VP). The investigation confirms the importance of core‐forming block length on morphology control of BCP self‐assemblies, especially with respect to tubular structures. The morphology landscape of tubular structures is successfully established, where dumbbell of tubule, tubule, loose clew of tubules, tight clew of tubules, and pincushion of tubules can be prepared by adjusting the core‐forming block length. This work therefore expands the structure library of BCP self‐assemblies and opens up a new avenue for the further applications of these tubular materials.  相似文献   

16.
Miniaturized autonomous chemo‐electronic swimmers, based on the coupling of spontaneous oxidation and reduction reactions at the two poles of light‐emitting diodes (LEDs), are presented as chemotactic and magnetotactic devices. In homogeneous aqueous media, random motion caused by a bubble‐induced propulsion mechanism is observed. However, in an inhomogeneous environment, the self‐propelled devices exhibit positive chemotactic behavior, propelling themselves along a pH or ionic strength gradient (?pH and ?I, respectively) in order to reach a thermodynamically higher active state. In addition, the intrinsic permanent magnetic moment of the LED allows self‐orientation in the terrestrial magnetic field or following other external magnetic perturbations, which enables a directional motion control coupled with light emission. The interplay between chemotaxis and magnetotaxis allows fine‐tuning of the dynamic behavior of these swimmers.  相似文献   

17.
One of the most inevitable limitations of any material that is exposed to mechanical impact is that they are inexorably prone to mechanical damage, such as cracking, denting, gouging, or wearing. To confront this challenge, the field of polymers has developed materials that are capable of autonomous self‐healing and recover their macroscopic integrity similar to biological organisms. However, the study of this phenomenon has mostly remained within the soft materials community and has not been explored by solid‐state organic chemists. The first evidence of self‐healing in a molecular crystal is now presented using crystals of dipyrazolethiuram disulfide. The crystals were mildly compressed and the degree of healing was found to be 6.7 %. These findings show that the self‐healing properties can be extended beyond mesophasic materials and applied towards the realm of ordered solid‐state compounds.  相似文献   

18.
Materials of supramolecular nature have attracted much attention owing to their interesting features, such as self‐reparability and material robustness, that are imparted by noncovalent interactions to synthetic materials. Among the various structures and synthetic methodologies that may be considered for this purpose, the introduction of extensive arrays of multiple hydrogen bonds allows for the formation of supramolecular materials that may, in principle, present self‐healing behavior. Hydrogen bonded networks implement dynamic noncovalent interactions. Suitable selection of structural units gives access to novel dynamic self‐repairing materials by incrementing the number of hydrogen‐bonding sites present within a molecular framework. Herein, we describe the formation of a tris‐urea based motif giving access to six hydrogen‐bonding sites, easily accessible through reaction of carbohydrazide with an isocyanate derivative. Extension towards the synthesis of multiply hydrogen‐bonded supramolecular materials has been achieved by polycondensation of carbohydrazide with a bis‐isocyanate component derived from poly‐dimethylsiloxane chains. Such materials underwent self‐repair at a mechanically cut surface. This approach gives access to a broad spectrum of materials of varying flexibility by appropriate selection of the bis‐isocyanate component that forms the polymer backbone.  相似文献   

19.
Various biological behaviors are fueled by “respiration”, which is an example of catabolism. So far, we have reported various self‐oscillating soft materials exhibiting bioinspired dynamic movements. These autonomous polymer systems are driven by the Belousov–Zhabotinsky (BZ) reaction, which is analogous to the tricarboxylic acid (TCA) cycle that is an integral part of respiration. However, in the BZ reaction, the external addition of an oxidizing agent is necessary to initiate the oxidation process, which is realized by intracellular moieties such as ubiquinone in living systems. Herein, we realized self‐oscillating micelles that are driven without the external addition of an oxidizing agent. This was achieved by embedding the oxidizing source into the structure of the self‐oscillating AB diblock copolymers. This strategy introduces a new function equivalent to intracellular oxidizing moieties, and is useful for the design of completely autonomous bioinspired materials.  相似文献   

20.
The cation–π interaction is a strong non‐covalent interaction that can be used to prepare high‐strength, stable supramolecular materials. However, because the molecular plane of a cation‐containing group and that of aromatic structure are usually perpendicular when forming a cation–π complex, it is difficult to exploit the cation–π interaction to prepare a 2D self‐assembly in which the molecular plane of all the building blocks are parallel. Herein, a double cation–π‐driven strategy is proposed to overcome this difficulty and have prepared 2D self‐assemblies with long‐range ordered molecular hollow hexagons. The double cation–π interaction makes the 2D self‐assemblies stable. The 2D self‐assemblies are to be an effective carrier that can eliminate metal‐nanoparticle aggregation. Such 2D assembly/palladium nanoparticle hybrids are shown to exhibit recyclability and superior catalytic activity for a model reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号