首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of electrolyte (NaHCO3) concentration on the adsorption of poly-DADMAC (poly-diallyldimethylammonium chloride) onto cellulosic fibers with different charge profiles was investigated. Surface carboxymethylated fibers were obtained by grafting carboxymethyl cellulose (CMC) onto the fiber surface and bulk carboxymethylated fibers were obtained by reacting the fibers with monochloroacetic acid. It was shown that nonionic interactions do not exist between cellulose and poly-DADMAC, rather electrostatic interactions govern the adsorption. Charge stoichiometry prevails under electrolyte-free conditions, whereas surface charge overcompensation occurs at higher electrolyte concentrations. It was shown that charge stoichiometry prevails if the thickness of the electric double layer kappa(-1) was larger than the mean distance between the charges on the fiber surface, as predicted by polyelectrolyte adsorption theories, taking lateral correlation effects into account. In a second set of experiments the ESCA technique served to independently calibrate the polyelectrolyte titrations for determining the surface charge of cellulosic fibers. Various molecular masses of poly-DADMAC were adsorbed to carboxymethylated fibers having different charge profiles. The adsorption of low M(w) poly-DADMAC (7.0 x 10(3)), analyzed by polyelectrolyte titration, was about 10 times higher than that of the high M(w) poly-DADMAC (9.2 x 10(5)). Despite the difference in accessibility of these two polyelectrolytes to the fiber cell wall, ESCA surface analysis showed, as expected, only slight differences between the two polyelectrolytes. This gives strong credibility to the idea that surface charge content of cellulosic fibers can be analyzed by means of adsorption of a high-molecular-mass cationic polymer, i.e., by polyelectrolyte titration.  相似文献   

2.
A surface-modified form of cellulose nanocrystals (CNC) was employed to explore mechanisms related to the release of water from cellulosic fiber suspensions during papermaking. The CNC surface was rendered partly cationic (forming CCNC) by adsorption of poly-(diallyldimethylammonium chloride) (poly-DADMAC), a high charge density cationic polymer. Meanwhile, a suspension of cellulosic fibers and calcium carbonate particles was prepared from recycled copy paper, which was treated sequentially with poly-DADMAC and a very-high-mass anionic acrylamide copolymer (aPAM). Subsequent addition of CCNC strongly promoted water release, whereas ordinary CNC had the opposite effect. The effect of the CCNC was achieved with ten times less poly-DADMAC, as the final additive, compared to when adding the polymer alone. Results were consistent with a model of nanoparticle-enabled bridging, based on an assumption of non-equilibrium or slowly equilibrating processes of adsorption.  相似文献   

3.
Cellulosic fiber has been increasingly used in many fields. The fiber charge, including the surface charge and inner charge, affects the properties of cellulosic fiber and fiber-based materials significantly. In this study, the cellulosic fiber was subjected to different treatments, including 2,2,6,6-tetramethyl-piperidine-1-oxyl radical-mediated oxidation, carboxymethyl cellulose attachment and mechanical refining, to alter the fiber charge selectively. The effects of the fiber surface charge and inner charge on fiber performances and inter-fiber bonding strength for improving the high-value application of cellulosic fibers, respectively, were discussed. The results showed that the performances of cellulosic fiber can be improved with the increase of either surface or inner fiber charges, including the increased water retention value, flexibility and inter-fiber bonding strength, but with slightly decreased drainability. An increasing bulk fiber charge showed more significant enhancement of the inter-fiber bonding strength than only an increase of the fiber surface charge on cellulosic fiber. This was because the fiber inner charge contributed to the increase of fiber flexibility and deformability, which could benefit the inter-fiber bonding indirectly. As a consequence, the bulk fiber charge enhancement was better for tensile strength improvement of handsheets (fiber-based material) than only fiber surface charge enhancement. Increasing both the surface charge and inner charge improved the tensile strength effectively with less change of the bulky fiber network than the refining treatment.  相似文献   

4.
The adsorption of four cationic surfactants with different alkyl chain lengths on cellulose substrates was investigated. Cellulose fibers were used as model substrates, and primary alcohol groups of cellulose glycosyl units were oxidized into carboxylic groups to obtain substrates with different surface charges. The amount of surfactant adsorbed on the fiber surface, the fiber zeta-potential, and the amount of surfactant counterions (Cl(-)) released into solution were measured as a function of the surfactant bulk concentration, its molecular structure, the substrate surface charge, and the ionic strength. The contribution of each of these parameters to the shape of the adsorption isotherms was used to verify if surfactant adsorption and self-assembly models usually used to describe the behavior of surfactant/oxide systems can be applied, and with which limitations, to describe cationic surfactant adsorption onto oppositely charged cellulose substrates.  相似文献   

5.
The physical immobilization behavior of horseradish peroxidase (HRP) on cellulosic fiber surfaces was characterized using adsorption and inactivation isotherms measured by the depletion method followed by fitting of Langmuir’s and Freundlich’s models to the experimental data. The adsorption and inactivation behavior of simpler and relatively non-porous high and low crystalline cellulosic substrates (microcrystalline cellulose and regenerated cellulose) as well as more complex and porous cellulosic pulp fibers (bleached kraft softwood fibers) were investigated. The effect of the sorbent surface energy on HRP adsorption was demonstrated by increasing the hydrophobicity of the cellulosic fibers using an internal sizing agent. The influence of the fiber surface charge density on HRP adsorption was studied via modification of the cellulosic fibers using TEMPO (2,2,6,6-tetramethyl-1-piperidiniloxy radical)-mediated oxidation methods. Results showed that hydrophobic interactions had a much larger effect on HRP adsorption than electrostatic interactions. More hydrophobic fiber surfaces (lower polar surface energy) result in larger enzyme-fiber binding affinity constants and higher binding heterogeneity. It was also found that oxidation of the cellulosic fiber substrate reduces enzyme adsorption affinity but significantly increases the loading capacity per unit weight of the surface.  相似文献   

6.
The diffusion of charged polymers into the pores of cellulose fibers has not yet been fully understood due to the complexity of the interaction between polymers and fibers. In this paper, the diffusion of cationic-modified poly(vinyl alcohol) (CPVA) with tailored charge densities and a relatively high molecular weight into the pores of bleached aspen high-yield pulp (via a chemi-thermomechanical pulping process) was quantitatively investigated via an adsorption analysis, charge density analysis, and solute exclusion technique (SET). The results showed that the adsorption of the low-charged CPVA was substantially higher than that of the high-charged CPVA on fibers. The surface charge density analysis confirmed that approximately 17 mg/g of the high-charged CPVA adsorbed on the outer surface and on the macropores of fibers and the remaining (23 mg/g) diffused into the pores. The SET analysis confirmed that the pore size of fibers was more significantly reduced by applying the low-charged CPVA than the high-charged one. The influencing factors for the diffusion of CPVA into the large and small pores were related to the repulsion force developed between the adsorbed polymers and approaching polymers, entropy increase, and the polymer flexibility. The Brunauer-Emmett-Teller surface area analysis showed an increase in the surface area of fibers upon CPVA adsorption. It was proposed that the diffused CPVA prevented complete fiber pore collapse during drying, which eventually increased the surface area of fibers.  相似文献   

7.
In this study, blends of low- and high-molecular-weight (Mw) poly(l-lactic acid) (PLLA) were prepared. High-Mw PLLA films that were crystallized at 125 °C for 7 h showed no clear-banded structures at film thicknesses less than approximately 40 μm. However, banded structures were observed in 1-?μm-thick films of high- and low-Mw PLLA blends with as little as 1 wt% low-Mw PLLA. Our results revealed that the formation of banded structures in pure PLLA was mainly due to the low-Mw component.  相似文献   

8.
We present a novel method for the measurement of polymer adsorption on fibers by employing fluorescently labeled polymers. The method itself can be used for any compound that either shows fluorescence or can be labeled with a fluorescent dye, which renders it ubiquitously applicable for adsorption studies. The main advantage of the method is that the choice of adsorbent is not limited to flat surfaces, thereby allowing the investigation of fibrous and porous systems. As an example of high interest for application we determined the adsorption isotherms of various polysaccharide-based polymers with different charges and different substituents on cotton fibers. These experiments show that the extent of adsorption depends not only on the charge conditions but also very much on the specific interactions between the polymer and fiber. For instance, the cationic hydroxyethyl cellulose can become bound to an extent similar to that of the anionic alginate, while the anionic carboxymethyl cellulose of similar charge density adsorbs much less under these conditions. This shows that the adsorption of polymers depends subtly on the details of the interaction between the polymer and fiber but can be determined with good precision with our direct fluorescence method.  相似文献   

9.
Natural cellulose fibers (cotton) comprise several noncellulose compounds (hemicellulose, wax and pectin substances) and cationic impurities which cause problems during different adsorption processes such as dying, or final fiber finishing and coating. Therefore the chemical purification (NaOH boiling, enzymatic purification, demineralization, extraction or oxidative bleaching) is the most important step in cellulose textile finishing. Alternative ways to describe the success of different processes in fiber purification which result in distinct surface charge and hydrophilicity are the determination of electrokinetic properties and the water uptake of textile fibers. The zeta-potential (ζ) was determined by streaming potential measurement as a function of the pH. From the ζ–pH functions the adsorption potential for all ionic species Φi (i.e. ( , in the case of potassium chloride solutions), the charge densities σk and the pK values are calculated according to the Börner and Jacobasch model.

The degradation and removal of hydrophobic noncellulose compounds which cover the primary hydroxyl and carboxyl groups of the cellulose polymer is clearly shown by an increase of the negative ζ of the plateau, which is in good agreement with the electrokinetic parameters of cotton samples determined by the Börner and Jacobasch model. The electrokinetic parameters determined by the Börner and Jacobasch model can be used to describe the adsorption/dissociation ability of textile fibers. The progress of the fiber processing (cleaning) is reflected by the surface charge as well as the hydrophilicity of the fiber.  相似文献   


10.
Nitrogen adsorption was used to characterize mesoporous structures in never-dried softwood cellulose fibers. Distinct inflections in desorption isotherms were observed over the relative vapor pressure (P/P0) range of 0.5–0.42 for never-dried cellulose fibers and partially delignified softwood powders. The reduction in N2 adsorption volume was attributed to cavitation of condensed N2 present in mesopores formed via lignin removal from wood cell walls during delignification. The specific surface areas of significantly delignified softwood powders were ~150 m2 g?1, indicating that in wood cell walls 16 individual cellulose microfibrils, each 3–4 nm in width, form one cellulose fibril bundle surrounded with a thin layer of lignin and hemicelluloses. Analysis of N2 adsorption isotherms indicates that mesopores in the softwood cellulose fibers and partially delignified softwood powders had peaks ranging from 4 to 20 nm in diameter.  相似文献   

11.
Natural cellulose fibres comprise several non-cellulose compounds and cationic trash which cause problems during different adsorption processes such as dying, printing, final fiber finishing and coating. Therefore the pre-treatment (classical NaOH or environmental friendly enzymatic treatment, demineralisation) is the most important step in cellulose textile prefinishing-cleaning. An appropriate way to describe the success of different processes in fiber pre-treatment which result in distinct surface charge is the determination of electrokinetic properties-zetapotential (ZP) of fibers and textile materials. The zetapotential was determined by streaming potential measurements as a function of the pH and the surfactant concentration in the liquid phase.Cellulose fibers in an aqueous medium are negatively charged due to their characteristic carbonyl and hydroxyl groups. The degradation and removal of specific hydrophobic non-cellulose compounds which cover the primary wall of the cellulose polymer change the surface charge.The ZP is mainly influenced by waxes, their removal decreases the negative ZP. This result is obtained by the classical chemical process as well as by an environmentally friendly enzymatic treatment.Our results indicate that the progress of textile treatment and purification is reflected by the zetapotential of the fabrics. This method enables the estimation of the process'es progress and the interaction between components of the liquid phase and the fibre surface.  相似文献   

12.
The adsorption and viscoelastic properties of cationic xylan layers adsorbed from an aqueous electrolyte solution (NaCl 0, 1, 10, 100 mM) on a cellulose model surface were studied using quartz crystal microbalance with dissipation (QCM-D). Three cationic xylans with different charge densities were used (molecular weight, 9,600 g/mol with degrees of substitution, DS = 0.150, 0.191, and 0.259). The influences of the electrolyte concentration and charge density of cationic xylan on its adsorption onto a cellulose surface were investigated. Low charged cationic xylan was substantially more efficient in surface adsorption on cellulose compared to high charged cationic xylan at a low concentration of electrolytes. Adsorption of low charged cationic xylan decreased with increases in electrolyte concentration. However, adsorption of high cationic xylan increased with electrolyte concentration. The conformation and viscoelastic properties of the layers were interpreted by modeling the data under the assumption that the layers can be explained by the a Voigt model. Low charged cationic xylan adsorbed relatively weakly onto the cellulose surface, and formed a thicker, softer layer than high charged cationic xylan. On the other hand, high charged cationic xylan formed a thinner adsorption layer onto the cellulose surface.  相似文献   

13.
Adsorption of fully hydrolyzed polyvinylamine on cellulose fibers in the short term was investigated by supplying the polymer to the fibers, first instantaneously by pouring the polymer solution into a jar containing the fiber dispersion (jar experiments) and second, at controlled rates (the reactor experiments). In the latter case, the rate of supply of polymer to the fiber dispersion confined in the reactor was monitored by setting the concentration of the solution being injected at a controlled rate. The concentration of the polymer solution exerts a paramount influence on the kinetics of adsorption and on the amount of polymer adsorbed at (or near) fiber surface saturation, while the rate of polymer supply only plays a minor role. The main observation is the emergence of two types of polymer layers corresponding to diffuse and dense layers. The former were characterized by adsorption layers of density smaller than 0.65 mg/g cellulose that are composed of adsorbed polymers having sustained extended flattening in the adsorbed state. The latter reach densities as high as 10 mg/g cellulose when the fiber surface is fully coated, thus indicating that reconformation is limited or even impeded at short terms. The threshold adsorption corresponds more or less to equilibrated layers, since the final coverage determined at adsorption equilibrium did not exceed 0.6 to 0.7 mg/g cellulose.  相似文献   

14.
The layer-by-layer (LbL) assembly process of creating highly structured thin films derived from layers of polyelectrolytes and nanoparticles was adopted in this study to modify the surface of lignocellulosic fibers. Aqueous dispersions of clay nanoplatelets were created with ultrasonication and characterized with dynamic light scattering and atomic force microscopy in which confirmed the presence of individual clay nanoplatelets. Film thickness of never-dried clay and poly(diallyldimethylammonium chloride) (PDDA) multilayers was studied with a quartz crystal microbalance with dissipation monitoring (QCM-D). Using identical LbL deposition parameters, a slurry of steam-exploded wood fibers was modified by alternate adsorption of PDDA and clay with multiple rinsing steps after each adsorption cycle. Zeta potential measurements were used to characterize the fiber surface charges after each adsorption step while SEM images revealed that the LbL film masked the cellulose microfibril structure. Using a thermogravimetric analyzer, LbL modified steam-exploded wood fibers were observed to attain increased thermal stability relative to the unmodified material tested in both air and nitrogen atmospheres. Significant char for the LbL clay coated steam-exploded wood suggests the multilayer film serves as a barrier creating an insulating layer to prevent further decomposition of the material. This nanotechnology may have a positive impact on the processing of lignocellulosic fibers in thermoplastic matrices, designing of paper-based overlays for building products, and modification of cellulosic fibers for textiles.  相似文献   

15.
Regenerated cellulose fibers were successfully prepared through dissolving cotton linters in NaOH/thiourea/urea aqueous solution at ?2 °C by a twin-screw extruder and wet-spinning process at varying precipitation and drawing conditions. The dissolution process of an optimized 7 wt% cellulose was controlled by polarizing microscopy and resulted in a transparent and stable cellulose spinning dope. Rheological investigations showed a classical shear thinning behavior of the cellulose/NaOH/thiourea/urea solution and a good stability towards gelation. Moreover, the mechanical properties, microstructures and morphology of the regenerated cellulose fibers were studied extensively by single fiber tensile testing, X-ray diffraction, synchrotron X-ray investigations, birefringence measurements and field-emission scanning electron microscopy. Resulting fibers demonstrated a smooth surface and circular cross-section with homogeneous morphological structure as compared with commercial viscose rayon. At optimized jet stretch ratio, acidic coagulation composition and temperature, the structural features and tensile properties depend first of all on the drawing ratio. In particular the crystallinity and orientation of the novel fibers rise with increasing draw ratio up to a maximum followed by a reduction due to over-drawing and oriented crystallites disruption. The microvoids in the fiber as analysed with SAXS were smaller and more elongated with increasing drawing ratio. Moreover, a higher tensile strength (2.22 cN/dtex) was obtained in the regenerated fiber than that of the viscose rayon (2.13 cN/dtex), indicating higher crystallinity and orientation, as well as more elongated and orientated microvoid in the regenerated fiber. All in all, the novel extruder-based method is beneficial with regard to the dissolution temperature and a simplified production process. Taking into account the reasonable fiber properties from the lab-trials, the suggested dissolution and spinning route may offer some prospects as an alternative cellulose processing route.  相似文献   

16.
Ultrafine fibrous (? from 100 to 450 nm) cellulose membranes were generated by electrospinning of cellulose acetate [degree of substitution (DS): 2.45, weight‐average molecular weight: 30,000 Da], followed by alkaline deacetylation. Reaction of these ultrahigh surface‐area cellulose fibers with methacrylate chloride (MACl) produced activated surfaces without altering the fiber morphology. Surface methacrylation of these fibers was confirmed by the acquired hydrophobicity (θwater = 84°) as compared to the originally hydrophilic (θwater = 56°) cellulose. Changing the MACl:OH molar ratios could vary the overall DS of methacrylation. The very low overall DS values indicate the surface nature of the methacrylation reaction. At a DS of 0.17, the thermal properties of the surface methacrylated cellulose resemble those of cellulose derivatives at much higher DS values, an unusual behavior of the ultrafine fibers. The methacrylated cellulose could be further copolymerized with vinyl monomers (methyl methacrylate, acrylamide, and N‐isopropylacrylamide) as linear grafts or three‐dimensional (3D) networks. The morphology of cellulose fibers and the interfiber pore structure were not altered at 15–33% graft levels. This study demonstrates that either linear or 3D networks of vinyl polymers could be efficiently supported on ultrafine cellulose fibrous membranes via surface methacrylation. Through these surface reactions the chemical, thermal, and liquid wetting and absorbent properties of these ultrafine fibrous membranes were significantly altered with no change to the fiber dimensions or interfiber pore morphology. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 953–964, 2003  相似文献   

17.
In this work, the objective was to synthesize a compatibilizer that can electrostatically adsorb onto cellulose fibers, in fiber-based composites, to enhance the interaction between the fibers and non-polar polymer matrices. This physical route to attach the compatibilizer onto and thereby modify a fiber surface is convenient since it can be performed in water under mild conditions. Polystyrene (PS) was used for the high molecular weight, non-polar, block and poly(dimethylamino)ethyl methacrylate (PDMAEMA) was used as the polar block, which was subsequently quaternized to obtain cationic charges. The block copolymer self-assembles in water into cationic micelles and the adsorption to both silicon oxide surfaces and cellulose model surfaces was studied. The micelles spread out on the surface after heat treatment and contact angle measurements showed that the contact angles against water increased significantly after this treatment. AFM force measurements were performed with a PS probe to study the adhesive properties. The adhesion increased with increasing contact time for the treated surfaces, probably due to entanglements between the polystyrene blocks at the treated surface and the probe. This demonstrates that the use of this type of amphiphilic block copolymer is a promising route to improve the compatibility between charged reinforcing materials, such as cellulose-based fibers/fibrils, and hydrophobic matrices in composite materials.  相似文献   

18.
The stabilizing role of carboxymethyl groups on the conformal deposition of Ag NPs over cellulosic fibers was elucidated while developing a method for the deposition of silver nanoparticles (NPs) on cellulose acetate (CA), cellulose and partially carboxymethylated cellulose (CMC) electrospun fibers. CMC fibers were prepared through judicious anionization of deacetylated cellulose acetate fibers. Ag NPs were chemically reduced from silver nitrate using sodium borohydride and further stabilized using citrate. Ag NPs were directly deposited onto CA, cellulose and CMC electrospun fibers at pH conditions ranging from 2.5 to 9.0. The resulting composites of Ag/fiber were characterized by field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray spectroscopy (EDX). The results revealed that the amount of Ag agglomerates and NPs deposited on CMC fibers was higher than that deposited on cellulose fibers at similar pH conditions, and that barely any Ag agglomerates or NPs were deposited on the CA fibers. These results implied that functional groups on the cellulose backbone played two important roles in the deposition of NPs as follows: (1) Hydrogen bonding was the main driving force for agglomeration of NPs when the medium pH was below 4.4, which corresponds to the pKa of carboxylic acid groups; (2) Carboxymethyl groups could replace citrate groups as stabilizers allowing the fabrication of a uniform and evenly distributed Ag NPs layer over CMC fibers at higher pH values. This report also highlights the importance of the substrate’s surface charge and that of the pH of the medium used, on the deposition of NPs. The composite of Ag NPs on CMC electrospun fibers appears to be a promising candidate for wound dressing applications due to its superior antibacterial properties originated by the uniform and even distribution of Ag NPs on the surface of the fibers and the wound healing aptness of the CMC fibers.  相似文献   

19.
The study explores the potential of cellulose nanocrystals (CNC), cellulose nanofibers (CNF) and chitin nanocrystals (ChNC) isolated from bioresidues to remove silver ions from contaminated water. Zeta sizer studies showed negatively charged surfaces for CNC and CNF isolated from cellulose sludge in the acidic and alkaline pHs, whereas ChNC isolated from crab shell residue showed either positive or negative charges depending on pH conditions. Model water containing silver ions showed a decrease in Ag+ ion concentration (measured by inductively coupled plasma-optical emission spectrometer; inductively coupled plasma mass spectrometry), after treatment with CNC, CNF and ChNC suspensions. The highest Ag+ ion removal was measured near neutral pH for CNC, being 34.4 mg/g, corresponding to 64 % removal. ChNC showed 37 % and CNF showed 27 % removal of silver ions. The WDX (wavelength dispersive X-ray analysis) and XPS (X-ray photoelectron spectroscopy) analysis confirmed the presence of silver ions on the surface of the nanocellulose and nanochitin after adsorption. Surface adsorption on the nanoparticles via electrostatic interactions is considered to be the prominent mechanism of heavy metal ion capture from aqueous medium, with CNC with negative surface charge and negatively charged functional groups being most favourable for the adsorption of positively charged Ag+ ions compared to other native bionanomaterials.  相似文献   

20.
To convert the hydrophilic cellulose fiber into hydrophobic, multilayers composed of cationic polyacrylamide (CPAM) and lignosulfonate (LS) were constructed on cellulose fiber surface using layer-by-layer (LBL) self-assembly technique. The presence of CPAM/LS multilayers were validated by zeta potential, X-ray photoelectron spectroscopy and atomic force microscopy (AFM). It was found that potential of fiber surface inversed after deposition of each layer, the contents of characteristic elements (i.e. S and N) of CPAM/LS multilayers increased with increasing bilayer number, furthermore, the calculated surface LS content increased linearly as a function of bilayers. AFM phase images indicated that the cellulose microfibrils on fiber surface were gradually covered by LS granules, resulting in an increase in fiber surface roughness as self-assembly proceeded. The wetting properties of modified cellulose fibers were detected by dynamic contact angle measurement. The results showed that the initial water contact angle gradually increased and the attenuation rate of the contact angle gradually decreased with the number of bilayers, suggesting that the controllable hydrophobicity of cellulose fiber can be achieved depending on the number of bilayers. It also showed that the polyelectrolyte presented in the outermost layer significantly influenced the wetting properties of cellulose fibers, and a higher hydrophobicity was observed when LS was in the outermost layer. Moreover, tensile strength test was performed on the handsheet prepared from LBL modified fibers to evaluate the effect of CPAM/LS multilayers on strength property of cellulose fiber networks. The tensile index of handsheet prepared from fibers modified with a (CPAM/LS)5 multilayer increased by 12.4% compared with that of handsheet prepared from original fibers. The print density of handsheet increased with the number of bilayers, suggesting that printability of the handsheet was improved by constructing CPAM/LS multilayers on cellulose fiber surface. This strategy will have a positive impact and potential application value in printing process control of cellulose fiber-based products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号