首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Baryon triality (B3) is a Z3 discrete symmetry that can protect the proton from decay. Although its realization does not require supersymmetry, it is particularly appealing in the supersymmetry as an alternative to the popular R-parity. We discuss the issues in gauging B3, and present the minimal supersymmetric model with B3 as the remnant discrete symmetry of a TeV scale U(1) gauge symmetry. A flavor-dependent U(1) charge is necessary to achieve this, and it results in very distinguishable and flavorful predictions for the LHC experiments. We find a complementarity between a 2-lepton sneutrino resonance and a 4-lepton Z resonance in the supersymmetry search when a certain condition is satisfied.In addition, we introduce baryon tetrality (B4), which would play an equivalent role if there are four fermion generations.  相似文献   

2.
《Physics letters. [Part B]》2001,504(4):296-300
The mass of the axion and its decay rate are known to depend only on the scale of Peccei–Quinn symmetry breaking, which is constrained by astrophysics and cosmology to be between 109 and 1012 GeV. We propose a new mechanism such that this effective scale is preserved and yet the fundamental breaking scale of U(1)PQ is very small (a kind of inverse seesaw) in the context of large extra dimensions with an anomalous U(1) gauge symmetry in our brane. The production and decay of the associated ZA gauge boson, which ends up as two gluons and two axions, is a distinct collider signature of this scenario.  相似文献   

3.
We propose a new model with flavor-dependent gauged U(1)_(B-L_1)×U(1)_(B-L_2-L_3) symmetry in addition to the flavor-blind symmetry in the Standard Model. The model contains three right-handed neutrinos to cancel gauge anomalies and several Higgs bosons to construct the measured fermion masses. We show the generic features of the model and explore its phenomenology. In particular, we discuss the current bounds on the extra gauge bosons from the K and B meson mixings as well as the LEP and LHC data, and focus on their contributions to the lepton flavor violating processes of ?_(i+1) →?_iγ(i=1,2).  相似文献   

4.
A complete set of operators is constructed connecting different vectors of maximal weight with respect to the subgroup U(nU(m)?U(nm), in an irreducible representation space of the group U(nm). These operators, together with the canonical lowering operators, can be used to construct a complete basis compatible with the reduction U(nm)↓U(nU(m).  相似文献   

5.
《Physics letters. [Part B]》1999,461(3):243-247
If the smallness of the mass of the sterile neutrino is to be explained by the see-saw mechanism, the off-diagonal entries of the mass matrix needs to be protected by some symmetry not far above the electroweak scale. We implement see-saw mechanism in a gauge model based on SU(2)qL×SU(2)lL×U(1)qY×U(1)lY un-unified gauge group which breaks to SU(2)L×U(1)Y at the TeV region via a two-step symmetry breaking chain. The right handed diagonal block is tied to the highest scale up to which the un-unification symmetry holds. The sterile neutrino emerges from a quark-lepton mixed representation of the un-unified group.  相似文献   

6.
We extend the colored Zee–Babu model with a gauged U(1)B-L symmetry, and a scalar singlet dark matter(DM) candidate S. The spontaneous breaking of U(1)B-L leaves a residual Z_2 symmetry that stabilizes the DM, and generates a tiny neutrino mass at the two-loop level with the color seesaw mechanism. After investigating the DM and flavor phenomenology of this model systematically, we further focus on its imprint on two cosmic-ray anomalies: The Fermi-LAT gamma-ray excess at the Galactic Center(GCE), and the Pe V ultra-high energy(UHE)neutrino events at the IceCube. We found that the Fermi-LAT GCE spectrum can be well-fitted by DM annihilation into a pair of on-shell singlet Higgs mediators while being compatible with the constraints from the relic density,direct detections, and dwarf spheroidal galaxies, in the Milky Way. Although the UHE neutrino events at the IceCube could be accounted for by the resonance production of a Te V-scale leptoquark, the relevant Yukawa couplings have been severely limited by the current low-energy flavor experiments. We subsequently derive the IceCube limits on the Yukawa couplings by employing its latest six-year data.  相似文献   

7.
An attempt has been made to investigate the global SU(2) and SU(3) unitary flavor symmetries systematically in terms of quaternion and octonion respectively. It is shown that these symmetries are suitably handled with quaternions and octonions in order to obtain their generators, commutation rules and symmetry properties. Accordingly, Casimir operators for SU(2) and SU(3) flavor symmetries are also constructed for the proper testing of these symmetries in terms of quaternions and octonions.  相似文献   

8.
The effective potential of the scalar field in theSU(5) model has extrema with symmetry:SU(5),SU(4)×U(1),SU(3)×SU(2)×U(1),SU(3)×[U(1)]2, [SU(2)]2×[U(1)]2. In our recent paper it was shown that theSU(4)×U(1) phase as well asSU(3)×SU(2)×U(1) phase were stable at the nonzero temperature in a vast region of parameters. In the present paper it is found that the [SU(2)]2×[U(1)]2 symmetric vacuum is unstable and theSU(3)×[U(1)]2 symmetric vacuum can be metastable in the certain interval of the temperature. Domains of the three phases:SU(4)×U(1),SU(3)×SU(2)×U(1),SU(3)×[U(1)]2-could co-exist in the early. Universe.  相似文献   

9.
We supersymmetrize the very attractive flavour unification modelSU (11). As with other supersymmetric GUTs the gauge hierarchy problem is simplified, but we may also have observable (τ p ≈1033 yrs) proton decay. The required split multiplets are obtained by making the adjoint take a particular direction. Supersymmetry is broken softly at the TeV scale. There is a uniqueU(1) A symmetry, and hence there are no true Nambu-Goldstone bosons. TheU(1) A is broken at the GUT scale and there result an invisible axion and neutrino masses.  相似文献   

10.
We study the possibility of production of same sign top quark pairs at the LHC as a direct probe of flavor changing neutral current (FCNC) processes in the tqg vertices. In particular, the LHC potential to probe the flavor violating parameter κ/Λ is investigated with 5, 10, 15, and 20 fb?1 of integrated luminosity of data of 7 and 8 TeV collisions. We find that the LHC can probe it down to 0.13 TeV?1 via double top production process. Also, we examine the effects of variation of factorization scale and different parton distribution functions on the total cross section of same sign top quark pair at the LHC. The results could be a valid starting point for a more detailed experimental study.  相似文献   

11.
We show that maximal atmospheric and large solar neutrino mixing can be implemented in SU(5) gauge theories, by making use of the U(1) F symmetry associated with a suitably defined family number F, together with a Z2 symmetry which does not commute with F. U(1) F is softly broken by the mass terms of the right-handed neutrino singlets, which are responsible for the seesaw mechanism; in additio n, U(1) F is also spontaneously broken at the electroweak scale. In our scenario, lepton mixing stems exclusively from the right-handed-neutrino Majorana mass matrix, whereas the CKM matrix originates solely in the up-type-quark sector. We show that, despite the non-supersymmetric character of our model, unification of the gauge couplings can be achieved at a scale 1016 GeV < m U < 1019 GeV; indeed, we have found a particula r solution to this problem which yields results almost identical to the ones of the minimal supersymmetric standard model. Received: 29 November 2002 / Published online: 3 March 2003 RID="a" ID="a" e-mail: walter.grimus@univie.ac.at RID="b" ID="b" e-mail: balio@cfif.ist.utl.pt  相似文献   

12.
In a previous paper, the quantum-group-covariant chiral vertex operators in the spin 1/2 representation were shown to act, by braiding with the other covariant primaries, as generators of the well known Uq(sl(2)) quantum group symmetry (for a single screening charge). Here, this structure is transformed to the Bloch wave/Coulomb gas operator basis, thereby establishing for the first time its quantum group symmetry properties. A Uq(sl(2)) Uq(sl(2)) symmetry of a novel type emerges: The two Cartan-generator eigenvalues are specified by the choice of matrix element (Vermamodules); the two Casimir eigenvalues are equal and specified by the Virasoro weight of the vertex operator considered; the co-product is defined with a matching condition dictated by the Hilbert space structure of the operator product. This hidden symmetry possesses a novel Hopf-like structure compatible with these conditions. At roots of unity it gives the right truncation. Its (non-linear) connection with the Uq(sl(2)) previously discussed is disentangled. Received: 25 April 1996/Accepted: 20 July 1996  相似文献   

13.
The Schrödinger-Robertson inequality for relativistic position and momentum operators X μ, P ν, μ, ν = 0, 1, 2, 3, is interpreted in terms of Born reciprocity and ‘non-commutative’ relativistic position-momentum space geometry. For states which saturate the Schrödinger-Robertson inequality, a typology of semiclassical limits is pointed out, characterised by the orbit structure within its unitary irreducible representations, of the full invariance group of Born reciprocity, the so-called ‘quaplectic’ group U(3, 1) #x2297;s H(3, 1) (the semi-direct product of the unitary relativistic dynamical symmetry U(3, 1) with the Weyl-Heisenberg group H(3, 1)). The example of the ‘scalar’ case, namely the relativistic oscillator, and associated multimode squeezed states, is treated in detail. In this case, it is suggested that the semiclassical limit corresponds to the separate emergence of spacetime and matter, in the form of the stress-energy tensor, and the quadrupole tensor, which are in general reciprocally equivalent.  相似文献   

14.
In this paper the global symmetry of the Hubbard model on a bipartite lattice is found to be larger than SO(4). The model is one of the most studied many-particle quantum problems, yet except in one dimension it has no exact solution, so that there remain many open questions about its properties. Symmetry plays an important role in physics and often can be used to extract useful information on unsolved non-perturbative quantum problems. Specifically, here it is found that for on-site interaction U ≠ 0 the local SU(2) × SU(2) × U(1) gauge symmetry of the Hubbard model on a bipartite lattice with NaD sites and vanishing transfer integral t = 0 can be lifted to a global [SU(2) × SU(2) × U(1)]/Z22 = SO(3) × SO(3) × U(1) symmetry in the presence of the kinetic-energy hopping term of the Hamiltonian with t > 0. (Examples of a bipartite lattice are the D-dimensional cubic lattices of lattice constant a and edge length L = Naa for which D = 1, 2, 3,... in the number NaD of sites.) The generator of the new found hidden independent charge global U(1) symmetry, which is not related to the ordinary U(1) gauge subgroup of electromagnetism, is one half the rotated-electron number of singly occupied sites operator. Although addition of chemical-potential and magnetic-field operator terms to the model Hamiltonian lowers its symmetry, such terms commute with it. Therefore, its 4NaD energy eigenstates refer to representations of the new found global [SU(2) × SU(2) × U(1)]/Z22 = SO(3) × SO(3) × U(1) symmetry. Consistently, we find that for the Hubbard model on a bipartite lattice the number of independent representations of the group SO(3) × SO(3) × U(1) equals the Hilbert-space dimension 4NaD. It is confirmed elsewhere that the new found symmetry has important physical consequences.  相似文献   

15.
Using the properties of massless free Fermi fields in (1-1) dimensions, it is shown that the spinor inverted form of Klaiber's operator solution to Thirring model is also a scale-invariant solution of the model. But unlike the former it admits a nonvanishing SU(n) current coupling in the generalization of the model to include U(n) symmetry. The value of this coupling constant is fixed and equals Dashen-Frishman number ?4π(n + 1). The general form of the 2m-point function is given and operates product expansions are exhibited in terms of composite local operators. Scale dimensions of all the bilinear and quadrilinear local operators with U(n) symmetry are computed and are found to depend on n. However, different parts of a composite local operator belonging to different irreducible U(n) representations have the same dimension.  相似文献   

16.
We present a supersymmetricSU(5)×U(1) model. This model has the following features. The gauge hierarchy is naturally generated by the quadratically divergent nature of the Fayet-IliopoulosD term. TheSU(5)×U(1) gauge symmetry breaks uniquely intoSU(3) W ×SU(2) c ×U(1) y at an energy scale of 1017–18GeV. The non-vanishing vacuum expectation value of an auxiliary field component ofU(1) gauge vector multiplet induces the breaking ofSU(2) W ×U(1) y . It gives a mass of 102–3GeV to scalar quarks and scalar leptons at the tree level. The renormalization group analysis shows that the color fine structure constant α C (M W ) becomes somewhat small and the Weinberg angle sin2θ W (M W ) somewhat too large in a simple version of the model.  相似文献   

17.
We list all possible dim = 6 CP conserving and SU(3) × SU(2) × U(1) gauge invariant interactions, which could be generated in case no new particles would be reachable in the future Colliders, and the only observable New Physics would be in the form of new interactions affecting the scalar sector and the quarks of the third family. These interactions are described by operators involving the standard model scalar field, the quarks of the third family and the gauge bosons. Subsequently, we identify those operators which do not contribute to LEP1 (and lower energy) observables at tree level and are not purely gluonic. Since present measurements do not strongly constrain the couplings of these operators, we derive here the unitarity bounds on them. Finally, in order to get a feeling on the possible physical meaning of the appearance of any of these operators, we identify the operators generated in a class of renormalizable dynamical models which at the TeV scale, are fully described by the SU(3) × SU(2) × U(1) gauge group.  相似文献   

18.
The boson-fermion symmetries, which are connected with the U(B)(5) limit of the interacting boson model are discussed. These symmetries arise when the bosons have U(5) symmetry and the fermions occupy a single-particle orbit with spin j = 12 (Spin(3) limit), j = 32 (Spin(5) limit), or j = 32, 52 (U(B+F)(5) ? U(F)(2) limit). Closed expressions for energy spectra, electromagnetic transition rates, static moments, and (one and two) nucleon transfer reaction intensities are derived.  相似文献   

19.
When the standard model is extended with right-handed neutrinos the symmetries of the resulting Lagrangian are enlarged with a new global U(1) R Abelian factor. In the context of minimal seesaw models we analyze the implications of a slightly broken U(1) R symmetry on charged lepton flavor violating decays. We find, depending on the R-charge assignments, models where charged lepton flavor violating rates can be within measurable ranges. In particular, we show that in the resulting models due to the structure of the light neutrino mass matrix muon flavor violating decays are entirely determined by neutrino data (up to a normalization factor) and can be sizable in a wide right-handed neutrino mass range.  相似文献   

20.
The invariant mass distribution of dijets produced in association with W bosons, recently observed by the CDF Collaboration at Tevatron, reveals an excess in the dijet mass range 120-160 GeV/c2, 3σ beyond Standard Model expectations. We show that such an excess is a generic feature of low mass string theory, due to the production and decay of a leptophobic Z, a singlet partner of SU(3) gluons coupled primarily to the U(1) baryon number. In this framework, U(1) and SU(3) appear as subgroups of U(3) associated with open strings ending on a stack of 3 D-branes. In addition, a minimal model contains two other stacks to accommodate the electro-weak SU(2)⊂U(2) and the hypercharge U(1). Of the three U(1) gauge bosons, the two heavy Z and Z receive masses through the Green-Schwarz mechanism. For a given Z mass, the model is quite constrained. Fine tuning three of its free parameters is just sufficient to simultaneously ensure: a small Z-Z mixing in accord with the stringent LEP data on the Z mass; very small (less than 1%) branching ratio into leptons; and a large hierarchy between Z and Z masses. The heavier neutral gauge boson Z is within the reach of LHC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号