首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A finite set X in the Euclidean space is called an s-inner product set if the set of the usual inner products of any two distinct points in X has size s. First, we give a special upper bound for the cardinality of an s-inner product set on concentric spheres. The upper bound coincides with the known lower bound for the size of a Euclidean 2s-design. Secondly, we prove the non-existence of 2- or 3-inner product sets on two concentric spheres attaining the upper bound for any d>1. The efficient property needed to prove the upper bound for an s-inner product set gives the new concept, inside s-inner product sets. We characterize the most known tight Euclidean designs as inside s-inner product sets attaining the upper bound.  相似文献   

2.
 Spherical t-designs are Chebyshev-type averaging sets on the d-sphere which are exact for polynomials of degree at most t. This concept was introduced in 1977 by Delsarte, Goethals, and Seidel, who also found the minimum possible size of such designs, in particular, that the number of points in a 3-design on S d must be at least . In this paper we give explicit constructions for spherical 3-designs on S d consisting of n points for d=1 and ; d=2 and ; d=3 and ; d=4 and ; and odd or even. We also provide some evidence that 3-designs of other sizes do not exist. We will introduce and apply a concept from additive number theory generalizing the classical Sidon-sequences. Namely, we study sets of integers S for which the congruence mod n, where and , only holds in the trivial cases. We call such sets Sidon-type sets of strength t, and denote their maximum cardinality by s(n, t). We find a lower bound for s(n, 3), and show how Sidon-type sets of strength 3 can be used to construct spherical 3-designs. We also conjecture that our lower bound gives the true value of s(n, 3) (this has been verified for n≤125). Received: June 19, 1996  相似文献   

3.
We consider spherical codes attaining the Levenshtein upper bounds on the cardinality of codes with prescribed maximal inner product. We prove that the even Levenshtein bounds can be attained only by codes which are tight spherical designs. For every fixed n ≥ 5, there exist only a finite number of codes attaining the odd bounds. We derive different expressions for the distance distribution of a maximal code. As a by-product, we obtain a result about its inner products. We describe the parameters of those codes meeting the third Levenshtein bound, which have a regular simplex as a derived code. Finally, we discuss a connection between the maximal codes attaining the third bound and strongly regular graphs. © 1999 John Wiley & Sons, Inc. J Combin Designs 7: 316–326, 1999  相似文献   

4.
A subset X in the d-dimensional Euclidean space is called a k-distance set if there are exactly k distinct distances between two distinct points in X and a subset X is called a locally k-distance set if for any point x in X, there are at most k distinct distances between x and other points in X.Delsarte, Goethals, and Seidel gave the Fisher type upper bound for the cardinalities of k-distance sets on a sphere in 1977. In the same way, we are able to give the same bound for locally k-distance sets on a sphere. In the first part of this paper, we prove that if X is a locally k-distance set attaining the Fisher type upper bound, then determining a weight function w, (X,w) is a tight weighted spherical 2k-design. This result implies that locally k-distance sets attaining the Fisher type upper bound are k-distance sets. In the second part, we give a new absolute bound for the cardinalities of k-distance sets on a sphere. This upper bound is useful for k-distance sets for which the linear programming bound is not applicable. In the third part, we discuss about locally two-distance sets in Euclidean spaces. We give an upper bound for the cardinalities of locally two-distance sets in Euclidean spaces. Moreover, we prove that the existence of a spherical two-distance set in (d−1)-space which attains the Fisher type upper bound is equivalent to the existence of a locally two-distance set but not a two-distance set in d-space with more than d(d+1)/2 points. We also classify optimal (largest possible) locally two-distance sets for dimensions less than eight. In addition, we determine the maximum cardinalities of locally two-distance sets on a sphere for dimensions less than forty.  相似文献   

5.
Let t(G) be the number of unitary factors of finite abelian group G. In this paper we prove T(x)=∑ |G|≤x t(G) = main terms for any exponent pair (κ1/2 + 2κ), which improves on the exponent 9/25 obtained by Xiaodong Cao and the author. Received December 8, 1998, Revised April 27, 1998, Accepted June 12, 1998  相似文献   

6.
We prove that there does not exist a [q4+q3q2−3q−1, 5, q4−2q2−2q+1]q code over the finite field for q≥ 5. Using this, we prove that there does not exist a [gq(5, d), 5, d]q code with q4 −2q2 −2q +1 ≤ dq4 −2q2q for q≥ 5, where gq(k,d) denotes the Griesmer bound.MSC 2000: 94B65, 94B05, 51E20, 05B25  相似文献   

7.
In this article we focus on perturbation bounds of unitary polar factors in polar decompositions for rectangular matrices. First we present two absolute perturbation bounds in unitarily invariant norms and in spectral norm, respectively, for any rectangular complex matrices, which improve recent results of Li and Sun (SIAM J. Matrix Anal. Appl. 2003; 25 :362–372). Secondly, a new absolute bound for complex matrices of full rank is given. When ‖A ? Ã2 ? ‖A ? ÃF, our bound for complex matrices is the same as in real case. Finally, some asymptotic bounds given by Mathias (SIAM J. Matrix Anal. Appl. 1993; 14 :588–593) for both real and complex square matrices are generalized. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
We are interested in improving the Varshamov bound for finite values of length n and minimum distance d. We employ a counting lemma to this end which we find particularly useful in relation to Varshamov graphs. Since a Varshamov graph consists of components corresponding to low weight vectors in the cosets of a code it is a useful tool when trying to improve the estimates involved in the Varshamov bound. We consider how the graph can be iteratively constructed and using our observations are able to achieve a reduction in the over-counting which occurs. This tightens the lower bound for any choice of parameters n, k, d or q and is not dependent on information such as the weight distribution of a code. This work is taken from the author’s thesis [10]  相似文献   

9.
We give a hierarchy of semidefinite upper bounds for the maximum size A(n,d) of a binary code of word length n and minimum distance at least d. At any fixed stage in the hierarchy, the bound can be computed (to an arbitrary precision) in time polynomial in n; this is based on a result of de Klerk et al. (Math Program, 2006) about the regular ∗-representation for matrix ∗-algebras. The Delsarte bound for A(n,d) is the first bound in the hierarchy, and the new bound of Schrijver (IEEE Trans. Inform. Theory 51:2859–2866, 2005) is located between the first and second bounds in the hierarchy. While computing the second bound involves a semidefinite program with O(n 7) variables and thus seems out of reach for interesting values of n, Schrijver’s bound can be computed via a semidefinite program of size O(n 3), a result which uses the explicit block-diagonalization of the Terwilliger algebra. We propose two strengthenings of Schrijver’s bound with the same computational complexity. Supported by the Netherlands Organisation for Scientific Research grant NWO 639.032.203.  相似文献   

10.
Jungnickel and Tonchev conjectured in [4] that if a quasi-symmetric design D is an s-fold quasi-multiple of a symmetric (v,k,λ) design with (k,(s ? 1)λ) = 1, then D is a multiple. We prove this conjecture under any one of the conditions: s ≤ 7, k ? 1 is prime, or the design D is a 3-design. It is shown that for any fixed s, the conjecture is true with at most finitely many exceptions. The unique quasi-symmetric 3-(22,7,4) design is characterized as the only quasi-symmetric 3-design, which as a 2-design is an s-fold quasi-multiple with s ≡ 1 (mod k). © 1994 John Wiley & Sons, Inc.  相似文献   

11.
Neumaier and Seidel (1988) generalized the concept of spherical designs and defined Euclidean designs in ℝ n . For an integer t, a finite subset X of ℝ n given together with a weight function w is a Euclidean t-design if holds for any polynomial f(x) of deg(f)≤ t, where {S i , 1≤ ip} is the set of all the concentric spheres centered at the origin that intersect with X, X i = XS i , and w:X→ ℝ> 0. (The case of XS n−1 with w≡ 1 on X corresponds to a spherical t-design.) In this paper we study antipodal Euclidean (2e+1)-designs. We give some new examples of antipodal Euclidean tight 5-designs. We also give the classification of all antipodal Euclidean tight 3-designs, the classification of antipodal Euclidean tight 5-designs supported by 2 concentric spheres.  相似文献   

12.
The minimum Euclidean distance is a fundamental quantity for block coded phase shift keying (PSK). In this paper we improve the bounds for this quantity that are explicit functions of the alphabet size q, block length n and code size |C|. For q=8, we improve previous results by introducing a general inner distance measure allowing different shapes of a neighborhood for a codeword. By optimizing the parameters of this inner distance measure, we find sharper bounds for the outer distance measure, which is Euclidean.The proof is built upon the Elias critical sphere argument, which localizes the optimization problem to one neighborhood. We remark that any code with q=8 that fulfills the bound with equality is best possible in terms of the minimum Euclidean distance, for given parameters n and |C|. This is true for many multilevel codes.  相似文献   

13.
In this paper we first establish a new variational characterisation of spherical designs: it is shown that a set , where , is a spherical L-design if and only if a certain non-negative quantity AL,N(XN) vanishes. By combining this result with a known “sampling theorem” for the sphere, we obtain the main result, which is that if is a stationary point set of AL,N whose “mesh norm” satisfies hXN<1/(L+1), then XN is a spherical L-design. The latter result seems to open a pathway to the elusive problem of proving (for fixed d) the existence of a spherical L-design with a number of points N of order (L+1)d. A numerical example with d=2 and L=19 suggests that computational minimisation of AL,N can be a valuable tool for the discovery of new spherical designs for moderate and large values of L.  相似文献   

14.
The hyperoctahedral group H in n dimensions (the Weyl group of Lie type B n ) is the subgroup of the orthogonal group generated by all transpositions of coordinates and reflections with respect to coordinate hyperplanes.With e 1 , ..., e n denoting the standard basis vectors of n and letting x k = e 1 + ··· + e k (k = 1, 2, ..., n), the set
is the vertex set of a generalized regular hyperoctahedron in n . A finite set with a weight function is called a Euclidean t-design, if
holds for every polynomial f of total degree at most t; here R is the set of norms of the points in ,W r is the total weight of all elements of with norm r, S r is the n-dimensional sphere of radius r centered at the origin, and is the average of f over S r . Here we consider Euclidean designs which are supported by orbits of the hyperoctahedral group. Namely, we prove that any Euclidean design on a union of generalized hyperoctahedra has strength (maximum t for which it is a Euclidean design) equal to 3, 5, or 7.We find explicit necessary and sufficient conditions for when this strength is 5 and for when it is 7.In order to establish our classification, we translate the above definition of Euclidean designs to a single equation for t = 5, a set of three equations for t = 7, and a set of seven equations for t = 9. Neumaier and Seidel (1988), as well as Delsarte and Seidel (1989), proved a Fisher-type inequality for the minimum size of a Euclidean t-design in n on p = |R| concentric spheres (assuming that the design is antipodal if t is odd).A Euclidean design with exactly N (n, p, t) points is called tight. We exhibit new examples of antipodal tight Euclidean designs, supported by orbits of the hyperoctahedral group, for N(n, p, t) = (3, 2, 5), (3, 3, 7), and (4, 2, 7).  相似文献   

15.
Belov, Logachev and Sandimirov construct linear codes of minimum distance d for roughly 1/q k/2 of the values of dq k-1. In this article we shall prove that, for q = p prime and roughly \frac38{\frac{3}{8}}-th’s of the values of d < q k-1, there is no linear code meeting the Griesmer bound. This result uses Blokhuis’ theorem on the size of a t-fold blocking set in PG(2, p), p prime, which we generalise to higher dimensions. We also give more general lower bounds on the size of a t-fold blocking set in PG(δ, q), for arbitrary q and δ ≥ 3. It is known that from a linear code of dimension k with minimum distance dq k-1 that meets the Griesmer bound one can construct a t-fold blocking set of PG(k−1, q). Here, we calculate explicit formulas relating t and d. Finally we show, using the generalised version of Blokhuis’ theorem, that nearly all linear codes over \mathbb Fp{{\mathbb F}_p} of dimension k with minimum distance dq k-1, which meet the Griesmer bound, have codewords of weight at least d + p in subcodes, which contain codewords satisfying certain hypotheses on their supports.  相似文献   

16.
It is well‐known that the number of designs with the parameters of a classical design having as blocks the hyperplanes in PG(n, q) or AG(n, q), n≥3, grows exponentially. This result was extended recently [D. Jungnickel, V. D. Tonchev, Des Codes Cryptogr, published online: 23 May, 2009] to designs having the same parameters as a projective geometry design whose blocks are the d‐subspaces of PG(n, q), for any 2≤dn−1. In this paper, exponential lower bounds are proved on the number of non‐isomorphic designs having the same parameters as an affine geometry design whose blocks are the d‐subspaces of AG(n, q), for any 2≤dn−1, as well as resolvable designs with these parameters. An exponential lower bound is also proved for the number of non‐isomorphic resolvable 3‐designs with the same parameters as an affine geometry design whose blocks are the d‐subspaces of AG(n, 2), for any 2≤dn−1. © 2010 Wiley Periodicals, Inc. J Combin Designs 18: 475–487, 2010  相似文献   

17.
A collection of subsets (called blocks) of a fixed vertex set (possibly with repetition) is called a (t n , t n –1, ..., t 1; a m , a m –1, ..., a 1)-design if it satisfies certain regularity conditions on the number of blocks which contain subsets of the vertex set of certain size, and other regularity conditions on the size of the intersections of certain numbers of the blocks. (For example, a BIBD (or (b, v, r, k, )-configuration) is a (1, 2; 1)-design, and a t-design is a (t, t–1, ..., 1; 1)-design.) A design has design-type (t n , ..., t 1; a m , ..., a 1) if it satisfies only those conditions. A one-sided design is a design with design-type (t n , ..., t 1;) or (;a m , ..., a 1). In this paper we show, by construction, that any one-sided design-type is possible.  相似文献   

18.
Knut Deimer 《Combinatorica》1985,5(2):109-120
Ad-dimensional circuit code of spreads is a simple circuitC in the graph of thed-dimen sional unit cube with the property that for any verticesx andy ofC which differ in exactlyr co-ordinates,r<s, there exists a path fromx toy consisting ofr edges ofC. This property is useful for detecting and limiting errors. In this paper we give a new upper bound for the maximum length of ad-dimensional circuit code of spread 2.  相似文献   

19.
20.
Euclidean t-designs, which are finite weighted subsets of Euclidean space, were defined by Neumaier-Seidel (1988). A tight t-design is defined as a t-design whose cardinality is equal to the known natural lower bound. In this paper, we give a new Euclidean tight 6-design in ${\mathbb{R}^{22}}$ . Furthermore, we also show its uniqueness up to similar transformation fixing the origin. This design has the structure of coherent configuration, which was defined by Higman, and is obtained from the properties of general permutation groups. We also show that the design is obtained by combining two orbits of McLaughlin simple group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号