首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conversion of benzhydryl acetate geminate radical pairs to contact ion pairs following photoinduced homolysis in solution is studied using picosecond pump-probe spectroscopy. The dynamics for the decay of the geminate radical pairs into contact ion pairs is modeled within a Marcus-like theory for nonadiabatic electron transfer. A second decay channel for the geminate radical pairs is diffusional separation to free radicals. The kinetics of this latter process reveals an energy of interaction between the two radicals in the geminate pair.  相似文献   

2.
Leonid V. Lukin   《Chemical physics》2009,360(1-3):32-46
A new approach to determination of the recombination rate of radical ion pairs in moderately polar solvents is presented. It is based on an investigation of transient photocurrents caused by dissociation of exciplexes generated in photoinduced electron transfer reactions. It has been shown that the recombination rate of geminate ion pairs can be found from the photocurrent rise time. We have applied such an approach to transient photocurrents observed by Hirata et al. [Y. Hirata, Y. Kanda, N. Mataga, J. Phys. Chem. 87 (1983) 1659] for the pyrene/dicyanobenzene system in solvents of moderate polarity. The increase of the obtained recombination rate of photogenerated ions with increasing polarity of solvent testifies that ions recombine mainly by the backward electron transfer from the dicyanobenzene anions to solvent-separated cations of pyrene.  相似文献   

3.
Results of our femtosecond-picosecond laser photolysis studies on photoinduced electron transfer phenomena in solutions including exciplex dynamics and its solvent dependences, energy gap dependences of photoinduced charge separation and charge recombination of various geminate ion pairs, mechanisms of chemical reactions via exciplexes and ion pairs, dynamics of photoinduced election transfer in hydrogen bonding complexes, dynamics and mechanisms of photoinduced electron transfer in fixed distance donor acceptor dyads and photosynthetic reaction center models, and mechanisms of electron ejection from solute fluorescent state in polar solutions are summarized and discussed.  相似文献   

4.
The reactions of carbon centered radical pairs often involve diffusion controlled combination and/or disproportionation reactions which are non-selective. A triplet geminate pair of radicals is produced by the photolysis of suitable ketones. The reactions of such geminate pairs can be controlled though the application of supramolecular concepts which emphasize non-covalent interaction to "steer" the geminate pair toward a selected pathway. In addition, "superdupermolecular" concepts, which emphasize the control of radical pair reactions through the orientation of electron spins, can be employed to further control the course of geminate pair reactions. Examples of control of a range of the selectivity of geminate radical combinations, which form strong covalent bonds, through supramolecular and superdupermolecular effects will be presented for the photolysis of ketones adsorbed in the supercages of zeolites.  相似文献   

5.
《Tetrahedron》1988,44(24):7335-7344
Photoinduced electron transfer reactions in acetonitrile with bensopheneone, anthraquinone, 9-cyanoanthracene and 9,10-dicyanoanthracene as electron acceptors, and with 1,4-diasabicyclo[2,2,2]octane and N,N-dimethylaniline as electron donors have been studied with ns-laser flash photolysis and fluorescence quenching measurements. For these systems the resulting free ion yield depends on the spin state of the geminate ion pair: its separation is very efficient if formed in a triplet state (carbonyl compounds/donors), while it is very inefficient if formed in a singlet state (cyanoanthracenes/donors). In the triplet systems, geminate back electron transfer is limited by the rate of spin flip.  相似文献   

6.
The synthesis and photophysical properties of a new series of dicationic electron transfer sensitizers have been reported. These new materials, pyrylogens, are hybrids of pyrylium cations and Viologen dications. Electron transfer reactions of neutral organic substrates using these new sensitizers generate radical-cation/radical-cation pairs whose repulsive (repellent) interaction is designed to compete with energy wasting return electron transfer (RET) by enhancing diffusive separation and formation of solvent separated ions.  相似文献   

7.
Horner JH  Lal M  Newcomb M 《Organic letters》2006,8(24):5497-5500
The kinetics of radical heterolysis reactions, including rate constants for radical cation-anion contact ion pair formation, collapse of the contact pair back to the parent radical, and separation of the contact pair to a solvent-separated ion pair or free ions were obtained in several solvents for a beta-mesyloxy radical. Rate constants were determined from indirect kinetic studies using thiophenol as both a radical trapping agent via H-atom transfer and an alkene radical cation trapping agent via electron transfer. [reaction: see text].  相似文献   

8.
A new perspective of electron transfer chemistry is described for fine control of electron transfer reactions including back electron transfer in the charge separated state of artificial photosynthetic compounds and its synthetic application. Fundamental electron transfer properties of suitable components of efficient electron transfer systems are described in light of the Marcus theory of electron transfer, in particular focusing on the Marcus inverted region, and they are applied to design multi-step electron transfer systems which can well mimic the function of a photosynthetic reaction center. Both intermolecular and intramolecular electron transfer processes are finely controlled by complexation of radical anions, produced in the electron transfer, with metal ions which act as Lewis acids. Quantitative measures to determine the Lewis acidity of a variety of metal ions are given in relation to the promoting effects of metal ions on the electron transfer reactions. The mechanistic viability of metal ion catalysis in electron transfer reactions is demonstrated by a variety of examples of chemical transformations involving metal ion-promoted electron transfer processes as the rate-determining steps, which are made possible by complexation of radical anions with metal ions.  相似文献   

9.
10.
Steady state fluorescence emission and transient absorption spectra of 9-fluorenone (9FL) were measured in the presence of 5-hydroxyindole (5HI) in highly polar acetonitrile (ACN) environment at ambient temperature. Cyclic voltammetry measurements demonstrate that ground state 5HI as a donor could take part in highly exothermic electron transfer (ET) reactions with excited 9FL, which should serve as electron acceptor. From the transient absorption measurements it is inferred that in geminate ion-pair (GIP) (or contact ion pair), formed initially due to photoinduced ET, the decay of this contact ion-pair occurs not only through ion recombination (back electron transfer to ground state of reactants), but through the other processes also such as proton-transfer (hydrogen abstraction) from radical cation to anion and separation of ion-pair producing the free ions. From the computed reorganisation energy parameter (λ) and experimentally observed - ET 0 values it is hinted that there is a possibility that highly exothermic forward electron transfer reactions in the singlet stateS 1 occur, within present reacting systems, in Marcus inverted region. Back transfer seems to follow the same path. Investigations with similar other reacting systems are underway.  相似文献   

11.
To make the effects of molecular size on photoinduced electron-transfer (ET) reactions clear, the ET fluorescence quenching of aromatic hydrocarbons by trivalent lanthanide ions M3+ (europium ion Eu3+ and ytterbium ion Yb3+) and the following ET reactions such as the geminate and free radical recombination were studied in acetonitrile. The rate constant k(q) of fluorescence quenching, the yields of free radical (phi(R)) and fluorescer triplet (phi(T)) in fluorescence quenching, and the rate constant k(rec) of free radical recombination were measured. Upon analysis of the free energy dependence of k(q), phi(R), phi(T), and k(rec), it was found that the switchover of the fluorescence quenching mechanism occurs at deltaG(fet) = -1.4 to -1.6 eV: When deltaG(fet) < -1.6 eV, the fluorescence quenching by M3+ is induced by a long-distance ET yielding the geminate radical ion pairs. When deltaG(fet) > -1.4 eV, it is induced by an exciplex formation. The exciplex dissociates rapidly to yield either the fluorescer triplet or the geminate radical ion pairs. The large shift of switchover deltaG(fet) from -0.5 eV for aromatic quenchers to -1.4 to -1.6 eV for lanthanide ions is almost attributed to the difference in the molecular size of the quenchers. Furthermore, it was substantiated that the free energy dependence of ET rates for the geminate and free radical recombination is satisfactorily interpreted within the limits of the Marcus theory.  相似文献   

12.
Photoinduced electron transfer reactions of chlorinated benzoquinones are investigated using bibenzylic donors that undergo rapid fragmentation upon oxidation. The fragmentation rates and the quantum yields are used to probe the dynamics of back-electron transfer (BET) in two types of radical ion pairs. The triplet ion pairs formed by interception of excited state quinones give products with high quantum yields. The singlet ion pairs formed by irradiation of the charge-transfer (CT) complexes between the quinones and the donors undergo reactions with significantly lower efficiency. The advantage of the first method (triplet quenching) over the CT-irradiation depends on the energetics of BET. It is large for reactions with relatively small DeltaG(et) for BET and it decreases for reactions with more negative DeltaG(bet). The indirectly obtained rates of BET are in excellent agreement with literature data for similar, but unreactive systems, and the rates of C-C bond scission in radical cations generated in these systems are consistent with the thermodynamics of these processes.  相似文献   

13.
Abstract

This review examines the mechanistic origins of the effects of stress on the photochemical degradation rates of polymers. Recent studies have shown that tensile and shear stresses accelerate the rate of the photochemical degradation of polymers. Conversely, compressive stress generally retards the rate of photochemical degradation. After an initial discussion of the photochemical auto‐oxidation mechanism, the three primary hypotheses that purport to explain how stress affects photochemical degradation are examined. The first hypothesis is attributed to Plotnikov, who proposed that stress changes the quantum yields of the reactions that lead to bond photolysis. The second hypothesis, attributed to a number of researchers, says that stress affects the ability of the geminate radical pairs, formed in the photochemical bond cleavage reactions, to recombine. The third hypothesis proposes that stress changes the rates of radical reactions subsequent to radical formation. A further attempt to account for the effects of stress on degradation rates is a modification of the so‐called Zhurkov equation that has been used rather successfully to predict the effects of stress on degradation rates in thermal reactions. This empirical equation relates the quantum yield of degradation to a composite activation barrier for the overall photochemical reaction. Following the discussion of these hypotheses, experimental mechanistic studies of stress effects are summarized, and what little data there is is shown to be consistent with the hypothesis that proposes that stress primarily affects the ability of photochemically generated radical pairs to recombine. By decreasing the efficiency of radical–radical recombination, the effect is to increase the relative efficiencies of the radicals' other reactions and hence the rate of degradation. In addition to stress, other factors can affect the rates of polymer photodegradation. These factors include the absorbed light intensity, the polymer morphology, the rate of oxygen diffusion in the polymer, and the chromophore concentration. Each of these parameters must be carefully controlled in mechanistic studies that probe the effects of stress on degradation rates.  相似文献   

14.
Photoinduced electron transfer and geminate recombination are studied for the systems rhodamine 3B (R3B(+)) and rhodamine 6G (R6G(+)), which are cations, in neat neutral N,N-dimethylaniline (DMA). Following photoexcitation of R3B(+) or R6G(+) (abbreviated as R(+)), an electron is transferred from DMA to give the neutral radical R and the cation DMA(+). Because the DMA hole acceptor is the neat solvent, the forward transfer rate is very large, approximately 5x10(12) s(-1). The forward transfer is followed by geminate recombination, which displays a long-lived component suggesting several percent of the radicals escape geminate recombination. Spectrally resolved pump-probe experiments are used in which the probe is a "white" light continuum, and the full time-dependent spectrum is recorded with a spectrometer/charge-coupled device. Observations of stimulated emission (excited state decay-forward electron transfer), the R neutral radical spectrum, and the DMA(+) radical cation spectrum as well as the ground-state bleach recovery (geminate recombination) make it possible to unambiguously follow the electron transfer kinetics. Theoretical modeling shows that the long-lived component can be explained without invoking hole hopping or spin-forbidden transitions.  相似文献   

15.
The quantum yields of triplets and free radicals (or radical ions) that escaped recombination in photochemically created primary radical pairs (or radical ion pairs) are calculated. As the products of monomolecular photodissociation, the neutral radicals appear at contact, while the ions are initially distributed over the space due to distant photoionization (bimolecular electron transfer) in the liquid solution. The diffusional dependence of the quantum yields is shown to be different when recombination starts from contact or from separated reactants. The experimental data for recombination of ionized perylene with aromatic amine counterions is well fitted with the noncontact initial distribution provided the recombination is also noncontact and even more distant than ionization.  相似文献   

16.
A theory similar to the radical pair model for CIDNP, etc., is used to describe the rate of loss of spin correlation in geminate pairs of radical ions produced by radiolysis. The ratio of the yields of triplet and singlet excited states and the effects of magnetic fields are discussed.  相似文献   

17.
Henning Paul   《Chemical physics》1979,40(3):265-274
ESR spectroscopy with modulated radical initiation is used to analyze quantitatively chemical lifetimes and CIDEP enhancements of 2-propyl-2-ol radicals, formed by photoreduction of acetone with 2-propanol in aqueous solution at T = 16°C. The bimolecular termination rate constant of the radicals is found to be diffusion controlled and to depend on the hyperfine state as a consequence of T0---S mixing in F-pairs. CIDEP enhancements built up in geminate and in F-pairs are separated. Their relative dependence on the hyperfine state agrees with microscopic theory, which however, fails to reproduce the absolute enhancements by a factor of 4. The polarizations indicate equal reactivities towards photoreduction for the three sublevels of the 3nπ* state of acetone, and conservation of the electron spin polarization upon radical formation. The initial separation of the species in the geminate pair is found to lie within the strong exchange region, since geminate and F-pairs show equal RPM polarizations. The CIDEP enhancements limit the rate constant k22 for abstraction of the hydroxylic hydrogen of 2-propanol by 3nπ* acetone to k22 < 105 dm3 mol−1 s −1.  相似文献   

18.
Photoinduced reactions of chloranil (CA) with 1,1-diarylethenes 1 [(p-X-Ph)(2)C=CH(2), X = F, Cl, H, Me] in benzene afforded products 4-14, respectively, with the bicyclo[4.2.0]oct-3-ene-2,5-diones 4, the 6-diarylethenylcyclohexa-2,5-diene-1,4-diones 5, and 2,3,5, 6-tetrachlorohydroquinone 13 as the major primary products. The cyclobutane products 4 are formed via a triplet diradical intermediate without involvement of single electron transfer (SET) between the two reactants, while 5 is derived from a reaction sequence with initial SET interaction between (3)CA and the alkene. The 9-arylphenanthrene-1,4-diones 6 and its 10-hydroxy-derivatives 7 are secondary photochemical products derived from 5. The isomeric cage products 9-11 are formed from 4 via intramolecular benzene-alkene [2 + 2] (ortho-)photocycloadditions induced by the triplet excited enedione moiety. The relative amount of the two groups of products (4 and its secondary products 9-11 via non-SET route vs 5 and its secondary products 6, 7, 8, 12, and 14 via SET route) shows a rather regular change, with the ratio of non-SET route products gradually increasing with the increase in oxidation potential of the alkenes and in the positive free energy change for electron transfer (DeltaG(ET)) between (3)CA and the alkene, at the expense of the ratio of the products from the SET route. The competition between the SET and non-SET routes was also found to be drastically influenced by solvent polarity, with the SET pathways more favored in polar solvent. Photo-CIDNP investigations suggest the intermediacy of exciplexes or contact ion radical pairs in these reactions in benzene, while in acetonitrile, SET process led to the formation of CA(*)(-) and cation radical of the alkene in the form of solvent separated ion radical pairs and free ions.  相似文献   

19.
The integral encounter theory (IET) has been extended to the reactions limited by diffusion along the reaction coordinate to the level crossing points where either thermal or hot electron transfer occurs. IET describes the bimolecular ionization of the instantaneously excited electron donor D* followed by the hot geminate backward transfer which precedes the ion pair equilibration and its subsequent thermal recombination. We demonstrate that the fraction of ion pairs which avoids the hot recombination is much smaller than their initial number when the electron tunneling is strong.  相似文献   

20.
This review summarizes recent studies concerning photophysical processes of donor–acceptor arrays involving perylene diimides and boron-dipyrromethenes (BODIPYs), and discusses fundamental photophysical properties, electron transfer in donor–acceptor arrays in solution and in aggregate systems, and applications to solar cells and sensors in biological systems (for BODIPYs). These compounds are generally characterized as fluorescent dyes and exhibit poor efficiency in intersystem crossing in direct excitation. However, a few studies have reported that the intersystem crossing is strongly induced by the following methodologies: presence of heavy atoms including metal ions; presence of radical substituents; charge recombination of the generated charge separated states; and hyperfine interactions in long-separated radical pairs. These methodologies are useful to selectively generate locally excited triplet states or charge separated states with minimal loss of deactivation to the singlet ground states. In this review, these methodologies are also introduced and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号