首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthetic and kinetic studies are used to uncover mechanistic details of the reduction of O(2) to water mediated by dirhodium complexes. The mixed-valence Rh(2)(0,II)(tfepma)(2)(CN(t)Bu)(2)Cl(2) (1, tfepma = MeN[P(OCH(2)CF(3))(2)](2), CN(t)Bu = tert-butyl isocyanide) complex is protonated by HCl to produce Rh(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)Cl(3)H (2), which promotes the reduction of O(2) to water with concomitant formation of Rh(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)Cl(4) (3). Reactions of the analogous diiridium complexes permit the identification of plausible reaction intermediates. Ir(2)(0,II)(tfepma)(2)(CN(t)Bu)(2)Cl(2) (4) can be protonated to form the isolable complex Ir(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)Cl(3)H (5), which reacts with O(2) to form Ir(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)Cl(3)(OOH) (6). In addition, 4 reacts with O(2) to form Ir(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)Cl(2)(η(2)-O(2)) (7), which can be protonated by HCl to furnish 6. Complexes 6 and 7 were both isolated in pure form and structurally and spectroscopically characterized. Kinetics examination of hydride complex 5 with O(2) and HCl furnishes a rate law that is consistent with an HCl-elimination mechanism, where O(2) binds an Ir(0) center to furnish an intermediate η(2)-peroxide intermediate. Dirhodium congener 2 obeys a rate law that not only is also consistent with an analogous HCl-elimination mechanism but also includes terms indicative of direct O(2) insertion and a unimolecular isomerization prior to oxygenation. The combined synthetic and mechanistic studies bespeak to the importance of peroxide and hydroperoxide intermediates in the reduction of O(2) to water by dirhodium hydride complexes.  相似文献   

2.
The heterocumulenes carbon dioxide (CO(2)), carbonyl sulfide (OCS), and carbon disulfide (CS(2)) were treated with bis(2,2,5,5-tetramethyl-2,5-disila-1-azacyclopent-1-yl)tin {[(CH(2))Me(2)Si](2)N}(2)Sn, an analogue of the well-studied bis[bis(trimethylsilyl)amido]tin species [(Me(3)Si)(2)N](2)Sn, to yield an unexpectedly diverse product slate. Reaction of {[(CH(2))Me(2)Si](2)N}(2)Sn with CO(2) resulted in the formation of 2,2,5,5-tetramethyl-2,5-disila-1-oxacyclopentane, along with Sn(4)(μ(4)-O){μ(2)-O(2)CN[SiMe(2)(CH(2))(2)]}(4)(μ(2)-N═C═O)(2) as the primary organometallic Sn-containing product. The reaction of {[(CH(2))Me(2)Si](2)N}(2)Sn with CS(2) led to formal reduction of CS(2) to [CS(2)](2-), yielding [{[(CH(2))Me(2)Si](2)N}(2)Sn](2)CS(2){[(CH(2))Me(2)Si](2)N}(2)Sn, in which the [CS(2)](2-) is coordinated through C and S to two tin centers. The product [{[(CH(2))Me(2)Si](2)N}(2)Sn](2)CS(2){[(CH(2))Me(2)Si](2)N}(2)Sn also contains a novel 4-membered Sn-Sn-C-S ring, and exhibits a further bonding interaction through sulfur to a third Sn atom. Reaction of OCS with {[(CH(2))Me(2)Si](2)N}(2)Sn resulted in an insoluble polymeric material. In a comparison reaction, [(Me(3)Si)(2)N](2)Sn was treated with OCS to yield Sn(4)(μ(4)-O)(μ(2)-OSiMe(3))(5)(η(1)-N═C═S). A combination of NMR and IR spectroscopy, mass spectrometry, and single crystal X-ray diffraction were used to characterize the products of each reaction. The oxygen atoms in the final products come from the facile cleavage of either CO(2) or OCS, depending on the reacting carbon dichalogenide.  相似文献   

3.
Three new Mo(V) dithiolene compounds have been synthesized by addition of alkynes ((Me(3)Si)(2)C(2) (TMSA), (Me(3)Si)(2)C(4), and (Ph)(2)C(4) to MoO(2)S(2)(2-) in a MeOH/NH(3) mixture: [Mo(2)(O)(2)(mu-S)(2)(eta(2)-S(2))(eta(2)-S(2)C(2)H(2))](2)(-) 1, [Mo(2)(O)(X)(mu-S)(2)(eta(2)-S(2))(eta(2)-S(2)C(2)Ph(C(2)Ph))](2-) 2 (X = O or S), and [Mo(2)(O)(2)(mu-S)(2)(eta(2)-S(2))(eta(2)-S(2)C(2)H(C(2)H))](2-) 3. The structure of 1 as determined by single-crystal X-ray diffraction study (space group Pbca, a = 13.3148(1) A, b = 15.7467(4) A, c = 28.4108(7) A, V = 5956.7(2) A(3)) is discussed. 2 and 3 have been identified by ESMS (electrospray mass spectrometry), (1)H NMR, (13)C NMR, and infrared spectroscopies. This investigation completes our previous study devoted to the addition of DPA (C(2)Ph(2)) to MoO(2)S(2)(2-) which led to [Mo(2)(O)(X)(mu-S)(2)(eta(2)-S(2))(eta(2)-S(2)C(2)Ph(2))](2-) 4 (X = O or S). A reaction scheme is proposed to explain the formation of the different species present in solution. The reactivity of the remaining nucleophilic site of these complexes (eta(2)-S(2)) toward dicarbomethoxyacetylene (DMA) is also discussed.  相似文献   

4.
Facile substitution reactions of the two water ligands in the hydrophilic tetradentate phosphine complex cis-[Fe{(HOCH2)P{CH2N(CH2P(CH2OH)2)CH2}2P(CH2OH)}(H2O)2](SO4) (abbreviated to [Fe(L1)(H2O)2](SO4), 1) take place upon addition of Cl-, NCS-, N3(-), CO3(2-) and CO to give [Fe(L1)X2] (2, X = Cl; 4, X = NCS; 5, X=N3), [Fe(L1)(kappa2-O(2)CO)], 6 and [Fe(L1)(CO)2](SO4), 7. The unsymmetrical mono-substituted intermediates [Fe(L1)(H2O)(CO)](SO(4)) and [Fe(L(1))(CO)(kappa(1)-OSO(3))] (8/9) have been identified spectroscopically en-route to 7. Treatment of 1 with acetic anhydride affords the acylated derivative [Fe{(AcOCH2)P{CH2N(CH2P(CH2OAc)2)CH2}2P(CH2OAc)}(kappa2-O(2)SO2)] (abbreviated to [Fe(L2)(kappa2-O(2)SO2)], 10), which has increased solubility over 1 in both organic solvents and water. Treatment of 1 with glycine does not lead to functionalisation of L1, but substitution of the aqua ligands occurs to form [Fe(L(1))(NH(2)CH(2)CO(2)-kappa(2)N,O)](HSO(4)), 11. Compound 10 reacts with chloride to form [Fe(L(2))Cl(2)] 12, and 12 reacts with CO in the presence of NaBPh4 to form [Fe(L2)Cl(CO)](BPh4) 13b. Both of the chlorides in 12 are substituted on reaction with NCS- and N3(-) to form [Fe(L2)(NCS)2] 14 and [Fe(L2)(N3)2] 15, respectively. Complexes 2.H2O, 4.2H2O, 5.0.812H2O, 6.1.7H2O, 7.H2O, 10.1.3CH3C(O)CH3, 12 and 15.0.5H2O have all been crystallographically characterised.  相似文献   

5.
The 1 (2)A(1), 1 (2)B(2), and 1 (2)A(2) electronic states of the SO(2) (+) ion have been studied using multiconfiguration second-order perturbation theory (CASPT2) and two contracted atomic natural orbital basis sets, S[6s4p3d1f]/O[5s3p2d1f] (ANO-L) and S[4s3p2d]/O[3s2p1d] (ANO-S), and the three states were considered to correspond to the observed X, B, and A states, respectively, in the previous experimental and theoretical studies. Based on the CASPT2/ANO-L adiabatic excitation energy calculations, the X, A, and B states of SO(2) (+) are assigned to 1 (2)A(1), 1 (2)B(2), and 1 (2)A(2), respectively, and our assignments of the A and B states are contrary to the previous assignments (A to (2)A(2) and B to (2)B(2)). The CASPT2/ANO-L energetic calculations also indicate that the 1 (2)A(1), 1 (2)B(2), and 1 (2)A(2) states are, respectively, the ground, first excited, and second excited states at the ground-state (1 (2)A(1)) geometry of the ion and at the geometry of the ground-state SO(2) molecule. Based on the CASPT2/ANO-L results for the geometries, we realize that the experimental geometries (determined by assuming the bond lengths to be the same as the neutral ground state of SO(2)) were not accurate. The CASPT2/ANO-S calculations for the potential energy curves as functions of the OSO angle confirm that the 1 (2)B(2) and 1 (2)A(2) states are the results of the Renner-Teller effect in the degenerate (2)Pi(g) state at the linear geometry, and it is clearly shown that the 1 (2)B(2) curve, as the lower component of the Renner splitting, lies below the 1 (2)A(2) curve. The UB3LYP/cc-pVTZ adiabatic excitation energy calculations support the assignments (A to (2)B(2) and B to (2)A(2)) based on the CASPT2/ANO-L calculations.  相似文献   

6.
The nucleophilicity of the [Pt(2)S(2)] core in [[Ph(2)P(CH(2))(n)PPh(2)]Pt(mu-S)(2)Pt[Ph(2)P(CH(2))(n)PPh(2)]] (n = 3, dppp (1); n = 2, dppe (2)) metalloligands toward the CH(2)Cl(2) solvent has been thoroughly studied. Complex 1, which has been obtained and characterized by X-ray diffraction, is structurally related to 2 and consists of dinuclear molecules with a hinged [Pt(2)S(2)] central ring. The reaction of 1 and 2 with CH(2)Cl(2) has been followed by means of (31)P, (1)H, and (13)C NMR, electrospray ionization mass spectrometry, and X-ray data. Although both reactions proceed at different rates, the first steps are common and lead to a mixture of the corresponding mononuclear complexes [Pt[Ph(2)P(CH(2))(n)PPh(2)](S(2)CH(2))], n = 3 (7), 2 (8), and [Pt[Ph(2)P(CH(2))(n)PPh(2)]Cl(2)], n = 3 (9), 2 (10). Theoretical calculations give support to the proposed pathway for the disintegration process of the [Pt(2)S(2)] ring. Only in the case of 1, the reaction proceeds further yielding [Pt(2)(dppp)(2)[mu-(SCH(2)SCH(2)S)-S,S']]Cl(2) (11). To confirm the sequence of the reactions leading from 1 and 2 to the final products 9 and 11 or 8 and 10, respectively, complexes 7, 8, and 11 have been synthesized and structurally characterized. Additional experiments have allowed elucidation of the reaction mechanism involved from 7 to 11, and thus, the origin of the CH(2) groups that participate in the expansion of the (SCH(2)S)(2-) ligand in 7 to afford the bridging (SCH(2)SCH(2)S)(2-) ligand in 11 has been established. The X-ray structure of 11 is totally unprecedented and consists of a hinged [(dppp)Pt(mu-S)(2)Pt(dppp)] core capped by a CH(2)SCH(2) fragment.  相似文献   

7.
Elimination pathways of the Br(2)(+) and Br(+) ionic fragments in photodissociation of 1,2- and 1,1-dibromoethylenes (C(2)H(2)Br(2)) at 233 nm are investigated using time-of-flight mass spectrometer equipped with velocity ion imaging. The Br(2)(+) fragments are verified not to stem from ionization of neutral Br(2), that is a dissociation channel of dibromoethylenes reported previously. Instead, they are produced from dissociative ionization of dibromoethylene isomers. That is, C(2)H(2)Br(2) is first ionized by absorbing two photons, followed by the dissociation scheme, C(2)H(2)Br(2)(+) + hv→Br(2)(+) + C(2)H(2). 1,2-C(2)H(2)Br(2) gives rise to a bright Br(2)(+) image with anisotropy parameter of -0.5 ± 0.1; the fragment may recoil at an angle of ~66° with respect to the C=C bond axis. However, this channel is relatively slow in 1,1-C(2)H(2)Br(2) such that a weak Br(2)(+) image is acquired with anisotropy parameter equal to zero, indicative of an isotropic recoil fragment distribution. It is more complicated to understand the formation mechanisms of Br(+). Three routes are proposed for dissociation of 1,2-C(2)H(2)Br(2), including (a) ionization of Br that is eliminated from C(2)H(2)Br(2) by absorbing one photon, (b) dissociation from C(2)H(2)Br(2)(+) by absorbing two more photons, and (c) dissociation of Br(2)(+). Each pathway requires four photons to release one Br(+), in contrast to the Br(2)(+) formation that involves a three-photon process. As for 1,1-C(2)H(2)Br(2), the first two pathways are the same, but the third one is too weak to be detected.  相似文献   

8.
Song LC  Li CG  Gao J  Yin BS  Luo X  Zhang XG  Bao HL  Hu QM 《Inorganic chemistry》2008,47(11):4545-4553
New C-functionalized propanedithiolate-type model complexes (1-8) have been synthesized by functional transformation reactions of the known complex [(mu-SCH2)2CH(OH)]Fe2(CO)6 (A). Treatment of A with the acylating agents PhC(O)Cl, 4-pyridinecarboxylic acid chloride, 2-furancarbonyl chloride, and 2-thiophenecarbonyl chloride in the presence of Et3N affords the expected C-functionalized complexes [(mu-SCH2)2CHO2CPh]Fe2(CO)6 (1), [(mu-SCH2)2CHO2CC5H4N-4]Fe2(CO)6 (2), [(mu-SCH2)2CHO2CC4H3O-2]Fe2(CO)6 (3), and [(mu-SCH2)2CHO2CC4H3S-2]Fe2(CO)6 (4). However, when A is treated with the phosphatizing agents Ph2PCl, PCl3 and PBr3, both C- and Fe-functionalized complexes [(mu-SCH2) 2CHOPPh2-eta1]Fe2(CO)5 (5), [(mu-SCH2) 2CHOPCl2-eta1]Fe2(CO)5 (6), and [(mu-SCH2) 2CHOPBr2-eta1]Fe2(CO)5 (7) are unexpectedly obtained via intramolecular CO substitution by P atoms of the initially formed phosphite complexes. The simplest C-functionalized model complex [(mu-SCH2) 2CO]Fe2(CO)6 (8) can be produced by oxidation of A with Dess-Martin reagent. While 8 is found to be an electrocatalyst for proton reduction to hydrogen, starting complex A can be prepared by another method involving the reaction of HC(OH)(CH2Br)2 with the in situ generated (mu-LiS) 2Fe2(CO)6. X-ray crystallographic studies reveal that the bridgehead C atom of 8 is double-bonded to an O atom to form a ketone functionality, whereas the bridgehead C atoms of A, 1, 3, and 4 are equatorially-bonded to their functionalities and those of 5-7 axially-bonded to their functionalities due to formation of the corresponding P-Fe bond-containing heterocycles.  相似文献   

9.
The azadithiolate (SCH2NHCH2S) cofactor proposed to occur in the Fe-only hydrogenases forms efficiently by the condensation of Fe2(SH)2(CO)6 (1), formaldehyde, and ammonia (as (NH4)2CO3). The resulting Fe2[(SCH2)2NH](CO)6 reacts with Et4NCN to give (Et4N)2[Fe2[(SCH2)2NH](CO)4(CN)2], for which crystallographic characterization confirmed an axial N-H and an elongated C-S bond of 1.858(3) A. Primary amines RNH2 (R = Ph, t-Bu) also participate in the condensation reaction, and Fe3S2(CO)9 can be employed in place of 1. Mechanistically, the Fe2[(SCH2)2NH] moiety is shown to arise via two pathways: (i) via the intermediacy of Fe2[(SCH2OH)2](CO)6, which was detected and shown to react with amines, and (ii) via the reaction of 1 with cyclic imines (CH2)3(NR)3 (R = Ph, Me). The reaction of 1 with (CH2)6N4 (hexamethylenetetramine) gives Fe2[(SCH2)2NH](CO)6. Trace amounts of Fe2[(SCH2)2N-t-Bu](CO)6 arise via the reaction of aqueous FeSO4, formaldehyde, NaSH, and t-BuNH2 under an atmosphere of CO.  相似文献   

10.
The protolysis of mononuclear ferric amide precursors FeCl[N(SiMe3)2]2(THF) (1) or [FeCl2{N(SiMe3)2}2]- (2) by primary amines provides, under suitable conditions, an effective route to dinuclear weak-field ferric-imide clusters with [Fe2(mu-NR)2]2+ cores. In the synthesis of known arylimide clusters [Fe2(mu-NAr)2Cl4]2- (Ar = Ph, p-Tol, Mes) from 2, the counterion has a major effect on selectivity and yield, and the use of quaternary ammonium salts affords a substantial improvement over earlier, Li+-based chemistry. The new tert-butylimide core is obtained by protolysis of 1 with excess tBuNH2 to give crystalline cis-Fe2(mu-NtBu)2Cl2(NH2tBu)2 (9). Complex 9 can be transformed to other dinuclear species through substitution of the terminal amines by pyridines, PEt3, or chloride, or through protolysis of bridging alkylimides by arylamines, allowing isolation of trans-Fe2(mu-NtBu)2Cl2(DMAP)2 (DMAP = 4-dimethylaminopyridine), cis-Fe2(mu-NtBu)2Cl2(PEt3)2, [Fe2(mu-NtBu)2Cl4]-, and trans-Fe2(mu-NPh)2Cl2(NH2tBu)2. The susceptibility of alkyl substituents to beta-elimination appears to limit the general applicability of protolytic cluster assembly using alkylamines. The dinuclear clusters have been characterized by X-ray, spectroscopic, and electrochemical analyses.  相似文献   

11.
Reaction of ArNCO with syn-[MoO(mu-O)(S2CNR2)]2 or syn-[MoO(mu-NAr)(S2CNR2)]2 at 110 degrees C leads to the facile formation of bridging ureato complexes [Mo2(NAr)2(mu-NAr){mu-ArNC(O)NAr}(S2CNR2)2](Ar = Ph, p-tol; R = Me, Et, Pr), formed upon substitution of all oxo ligands and addition of a further equivalent of isocyanate across one of the bridging imido ligands. Related sulfido-bridged complexes [Mo2(NAr)2(mu-S){mu-ArNC(O)NAr}(S2CNR2)2] have been prepared from syn-[Mo2O2(mu-O)(mu-S)(S2CNR2)2]. When reactions with syn-[MoO(mu-NAr)(S2CNEt2)]2 were followed by NMR, intermediates were observed, being formulated as [Mo2O(NAr)(mu-NAr){mu-ArNC(O)NAr}(S2CNEt2)2], which at higher temperatures convert to the fully substituted products. A crystallographic study of [Mo2(N-p-tol)2(mu-S){mu-p-tolNC(O)N-p-tol}(S2CNPr2)2] reveals that the bridging ureato ligand is bound asymmetrically to the dimolybdenum centre-molybdenum-nitrogen bonds trans to the terminal imido ligands being significantly elongated with respect to those cis-a result of the trans-influence of the terminal imido ligands. This trans-influence also leads to a trans-effect, whereby the exchange of aryl isocyanates can occur in a regioselective manner. This is followed by NMR studies and confirmed by a crystallographic study of [Mo2(N-p-tol)2(mu-N-p-tol){mu-p-tolNC(O)NPh}(S2CNEt2)2]--the PhNCO occupying the site trans to the terminal imido ligands. Ureato complexes also react with PhNCS, initially forming [Mo2(NAr)2(mu-S){mu-ArNC(O)NAr}(S2CNR2)2], resulting from exchange of the bridging imido ligand for sulfur, together with small amounts of [Mo2(NAr)2(mu-S)(mu-S2)(S2CNEt2)2], containing bridging sulfide and disulfide ligands. The ureato complexes [Mo2(NAr)2(mu-S){mu-ArNC(O)NAr}(S2CNR2)2] react further with PhNCS to give [Mo2(NAr)2(mu-S)2(S2CNR2)2]n (n = 1, 2), which exist in a dimer-tetramer equilibrium. In order to confirm these results crystallographic studies have been carried out on [Mo2(N-p-tol)2(mu-S)(mu-S2)(S2CNEt2)2] and [Mo2(N-p-tol)2(mu-S)2(S2CNPr2)2]2.  相似文献   

12.
Reaction of [(IPr)Cu-OtBu] (1) with pinB-SiMe(2)Ph (2) leads to the Cu-silyl complex [(IPr)Cu-SiMe(2)Ph] (3). Insertion of CO(2) into the Cu-Si bond of 3 is followed by transformation of the resulting silanecarboxy complex [(IPr)Cu-O(2)CSiMe(2)Ph] (4) to the silanolate complex [(IPr)Cu-OSiMe(2)Ph] (5) via extrusion of CO. As 5 reacts readily with 2 to regenerate 3, a catalytic CO(2) reduction to CO is feasible. The individual steps were studied by in situ(13)C NMR spectroscopy of a series of stoichiometric reactions. Complexes 3, 4, and 5 were isolated and fully characterized, including single-crystal X-ray diffraction studies. Interestingly, the catalytic reduction of CO(2) using silylborane 2 as a stoichiometric reducing agent leads not only to CO and pinB-O-SiMe(2)Ph but also to PhMe(2)Si-CO(2)-SiMe(2)Ph as an additional reduction product.  相似文献   

13.
Liu G  Hu J  Wen J  Dai H  Li Y  Yan H 《Inorganic chemistry》2011,50(9):4187-4194
The reaction of the 16-electron half-sandwich complex CpCo(S(2)C(2)B(10)H(10)) (1; Cp = cyclopentadienyl) with ethyl diazoacetate (EDA) at ambient temperature leads to compounds CpCo(S(2)C(2)B(10)H(10))(CHCO(2)Et) (2), CpCo(S(2)C(2)B(10)H(8))(CHCO(2)Et)(CH(2)CO(2)Et)[CH(CO(2)Et)(CH(2)CO(2)Et)] (3), CpCo(S(2)C(2)B(10)H(9))(CH(2)CO(2)Et)(CHCO(2)Et)(2) (4), CpCo(S(2)C(2)B(10)H(9))(CHCO(2)Et)(CH(2)CO(2)Et) (5), and CpCo(S(2)C(2)B(10)H(9))(CHCO(2)Et)(2)(CH(2)CO(2)Et) (6). In 2, the EDA molecule has been inserted into one Co-S bond in 1 with the loss of N(2) to form an 18-electron compound containing a three-membered metallacyclic ring. In 3, two B-H bonds of the carborane cage have been activated and the unusual B4-H bond activation leads to the formation of a stable Co-B bond. Two EDA molecules are inserted into the Co-B3 bond to generate an unexpected six-membered heterocyclic ring Co-B-B-C-C-O. In 4, a stable Co-B bond is present as well but in the position B3/B6, and two EDA molecules are inserted into one Co-S bond to produce a five-membered heterocyclic ring Co-C-C-C-O. In 5, one EDA is inserted into the Co-B bond with the formation of a C-B bond in the position B3/B6. One more EDA is inserted into the Co-S bond in 5 to generate 6. Upon heating, 6 loses the BH vertex close to the two carbon atoms to lead to CpCo(S(2)C(2)B(9)H(9))(CHCO(2)Et)(CH(2)CO(2)Et)(2) (7) containing a nido-C(2)B(9) unit. All of the new compounds 2-7 were characterized by NMR spectroscopy ((1)H, (11)B, and (13)C), mass spectrometry, IR spectroscopy, and elemental analysis, and their solid-state structures were further characterized by X-ray structural analysis.  相似文献   

14.
The awareness of symptoms of global warming and its seriousness urges the development of technologies to reduce greenhouse gas emissions. Carbon dioxide (CO(2)) is a representative greenhouse gas, and numerous methods to capture and storage CO(2) have been considered. Recently, the technology to remove high-temperature CO(2) by sorption has received lots of attention. In this study, hydrotalcite, which has been known to have CO(2) sorption capability at high temperature, was impregnated with K(2)CO(3) to enhance CO(2) sorption uptake, and the mechanism of CO(2) sorption enhancement on K(2)CO(3)-promoted hydrotalcite was investigated. Thermogravimetric analysis was used to measure equilibrium CO(2) sorption uptake and to estimate CO(2) sorption kinetics. The analyses based on N(2) gas physisorption, X-ray diffractometry, Fourier transform infrared spectrometry, Raman spectrometry, transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy were carried out to elucidate the characteristics of sorbents and the mechanism of enhanced CO(2) sorption. The equilibrium CO(2) sorption uptake on hydrotalcite could be increased up to 10 times by impregnation with K(2)CO(3), and there was an optimal amount of K(2)CO(3) for a maximum equilibrium CO(2) sorption uptake. In the K(2)CO(3)-promoted hydrotalcite, K(2)CO(3) was incorporated without changing the structure of hydrotalcite and it was thermally stabilized, resulting in the enhanced equilibrium CO(2) sorption uptake and fast CO(2) sorption kinetics.  相似文献   

15.
Magnesium and zinc complexes of the monoanionic ligands N,N'-bis(2,6-di-isopropylphenyl)triazenide, L1, N,N'-bis(2,6-di-isopropylphenyl)acetamidinate, L2, and N,N'-bis(2,6-di-isopropylphenyl)tert-butylamidinate, L3, have been synthesized, but only L3 possesses sufficient steric bulk to prevent bis-chelation. Hence, the reaction of L1H with excess ZnEt2 leads to the isolation of (L1)2Zn, 1; L1H also reacts with Bu2Mg in Et2O to afford (L1)2Mg(Et2O), 2. Similar reactivity is observed for L2H, leading to the formation of (L2)2Zn, 3, and (L2)2Mg, 4. The reaction of L2H with ZnR2 may also afford the tetranuclear aggregates {(L2)Zn2R2}2O, 5 (R=Me) and 6 (R=Et). By contrast, the tert-butylamidinate ligand was found to exclusively promote mono-chelation, allowing (L3)ZnCl(THF), 7, [(L3)Zn(micro-Cl)]2, 8, (L3)ZnN(SiMe3)2, 9, (L3)MgiPr(Et2O), 10, and (L3)MgiPr(THF), 11, to be isolated. X-ray crystallographic analyses of 1, 2, 3, 4, 5, 6, 8, and 10 indicate that the capacity of L3 to resist bis-chelation is due to greater occupation of the metal coordination sphere by the N-aryl substituents.  相似文献   

16.
The compounds M(2)(mhp)(4), where M = Mo or W and mhp is the anion formed from deprotonation of 2-hydroxy-6-methylpyridine, are shown to react with carboxylic acids RCOOH to give an equilibrium mixture of products M(2)(O(2)CR)(n)(mhp)(4-n) where R = 2-thienyl and phenyl. The equilibrium can be moved in favor of M(2)(O(2)CR)(4) by the addition of excess acid or by the favorable crystallization of these products. The latter provides a facile synthesis of the W(2)(O(2)CR)(4) compound where R = 9-anthracene. Reactions involving 2,4,6-triisopropyl benzoic acid, TiPBH, yield M(2)(TiPB)(2)(mhp)(2) compounds as thermodynamic products. Reactions involving Me(3)OBF(4) (1 and 2 equiv.) yield the complexes Mo(2)(mhp)(3)(CH(3)CN)(2)BF(4) and Mo(2)(mhp)(2)(CH(3)CN)(4)(BF(4))(2), respectively. The latter compound has been structurally characterized and shown to have mirror symmetry with two cis mhp ligands: MoMo = 2.1242(5) A, Mo-O = 2.035(2) A, Mo-N(mhp) = 2.161(2) A, and Mo-N(CH(3)CN) = 2.160(3) and 2.170(3) A. Reactions involving Mo(2)(mhp)(3)(CH(3)CN)(2)(2+) and Mo(2)(mhp)(2)(CH(3)CN)(4)(2+) with (n)Bu(4)NO(2)CMe (1 and 2 equiv.) yield the complexes Mo(2)(mhp)(3)(O(2)CMe) and Mo(2)(mhp)(2)(O(2)CMe)(2) which are shown to be kinetically labile to ligand scrambling. Reactions between Mo(2)(mhp)(3)(CH(3)CN)(2)(+)BF(4)(-) (2 equiv.) and [(n)Bu(4)N(+)](2)[O(2)C-X-CO(2)](2-) yielded dimers of dimers [Mo(2)(mhp)(3)](2)(micro-O(2)C-X-CO(2)] where X = nothing, 2,5- or 3,4-thienyl and 1,4-C(6)H(4). Reactions between Mo(2)(mhp)(2)(CH(3)CN)(4)(2+)(BF(4)(-))(2) and tetra-n-butylammonium oxalate and terephthalate yield compounds [Mo(mhp)(2)bridge](n) which by MALDI-TOF MS are proposed to be a mixture of molecular squares (n = 4) and triangles (n = 3) along with minor products of [Mo(2)(mhp)(3)](2)(bridge) and Mo(2)(mhp)(4) that arise from ligand scrambling.  相似文献   

17.
[H2Ir(OCMe2)2L2]BF4 (1) (L = PPh3), a preferred catalyst for tritiation of pharmaceuticals, reacts with model substrate 2-(dimethylamino)pyridine (py-NMe2; py = 2-pyridyl) to give chelate carbene [H2Ir(py-N(Me)CH=)L2]BF4 (2a) via cyclometalation, H2 loss, and reversible alpha-elimination. Agostic intermediate [H2Ir(py-N(Me)CH2-H)L2]BF4) (4a), seen by NMR, is predicted (DFT(B3PW91) computations) to give C-H oxidative addition to form the alkyl intermediate [(H)(eta2-H2)Ir(py-N(Me)CH2-)L2]BF4. Loss of H2 leads to the fully characterized alkyl [HIr(OCMe2)(py-N(Me)CH2-)L2]BF4 (3a(Me2CO)), which loses acetone to give alkylidene hydride 2a by rapid reversible alpha-elimination. 2a rapidly reacts with excess H2 in d6-acetone to generate [H2Ir(OC(CD3)2)2L2]BF4 (1-d12), 3a((CD3)2CO), and py-NMe2 in a 1:1:1 ratio, showing reversibility and accounting for the selective isotope exchange catalyzed by 1. Reaction of 1 with py-N(CH2)4 gives the fully characterized carbene 2c. A cis-L(2) carbene intermediate, cis-2c, observed by NMR, reacts with CO via retro alpha-elimination to give the alkyl 3cCO, while the trans isomer, 2c, does not react; retro alpha-elimination thus requires the Ir-H bond to be orthogonal to the carbene plane. Consistent with experiment, computational studies show a particularly flat PE surface with activation of the agostic C-H bond giving a less stable H2 complex, then formation of a kinetic carbene complex with cis-L, only seen experimentally for py-N(CH2)4. Hydrides at key positions, together with gain or loss of solvent and H2, flatten the PE (DeltaG) surfaces to allow fast catalysis.  相似文献   

18.
We report theoretical investigations on the effect of H --> F substitution in acetylacetonate ligands in order to understand why fluorination promotes the extraction of uranyl to supercritical CO(2) with a marked synergistic effect of tri-n-butyl phosphate "TBP". The neutral LH and deprotonated L(-) forms of the ligand, and the uranyl complexes UO(2)L(2) and UO(2)L(2)S (S = H(2)O versus trimethyl phosphate "TMP" which mimics TBP) are studied by quantum mechanics (QM) in the gas phase, whereas the ligands LH and their UO(2)L(2) and UO(2)L(2)S complexes are studied by molecular dynamics (MD) in SC-CO(2) solution as well as at a CO(2)-water interface. Several effects are found to favor F ligands over the H ligands. (i) First, intrinsically (in the gas phase), the complexation reaction 2 LH + UO(2)(2+) --> UO(2)L(2) is more exothermic for the F ligands, mainly due to their higher acidity, compared to the H ligands. (ii) The unsaturated UO(2)L(2) complexes with F ligands bind more strongly TMP than H(2)O, thus preferentially leading to the UO(2)L(2)(TMP) complex, more hydrophobic than UO(2)L(2)(H(2)O). (iii) Molecular dynamics simulations of SC-CO(2) solutions show that the F ligands and their UO(2)L(2) and UO(2)L(2)S complexes are better solvated than their H analogues, and that the UO(2)L(2)(TBP) complex with F ligands is the most CO(2)-philic. (iv) Concentrated solutions of UO(2)L(2)(TBP) complexes at the CO(2)-water interface display an equilibrium between adsorbed and extracted species, and the proportion of extracted species is larger with F- than with H- ligands, in agreement with experimental observations. Thus, TBP plays a dual synergistic role: its co-complexation by UO(2)L(2) yields a hydrophobic and CO(2)-philic complex suitable for extraction, whereas TBP in excess at the interface facilitates the migration of the complex to the supercritical phase.  相似文献   

19.
The crystal structures of (H(3)C)(2)O, H(2)SiCl(2) and an adduct of these were determined by low-temperature X-ray crystallography on crystals grown in situ at low temperatures on a diffractometer. The adduct of (H(3)C)(2)O and H(2)SiCl(2) has the composition [(H(3)C)(2)O.H(2)SiCl(2)](2) and contains a four-membered Si(2)O(2) ring, with the Cl atoms pointing to the outside and the Si-H functions pointing to the inner side of the ring. The Si(2)O(2) ring has two longer and two shorter SiO bonds and thus deviates from a square. Quantum chemical calculations give a geometry for [(H(3)C)(2)O.H(2)SiCl(2)](2) which has D(2h) symmetry and allow to obtain an estimate for the adduct formation energies, which are -13.4 kJ mol(-1) for the formation of the mono adduct [(H(3)C)(2)O + H(2)SiCl(2)-->(H(3)C)(2)O.H(2)SiCl(2)], -14.4 kJ mol(-1) for the dimerization of two mono adducts [(H(3)C)(2)O.H(2)SiCl(2)-->[(H(3)C)(2)O.H(2)SiCl(2)](2)] and -41.2 kJ mol(-1) for the reaction 2 (H(3)C)(2)O + 2 H(2)SiCl(2)-->[(H(3)C)(2)O.H(2)SiCl(2)](2). The results are used to rationalize the strongly reduced reactivity of H(2)SiCl(2) towards nucleophilic substitution reactions in (H(3)C)(2)O at low temperatures.  相似文献   

20.
The molybdenum and tungsten complexes W2(NtBu)4(pz)4(pzH).(C6H14)0.5 (pz = pyrazolate), M(NtBu)2(Me2pz)2(Me2pzH)2 (Me2pz = 3,5-dimethylpyrazolate), M(NtBu)2(tBu2pz)2 (tBu2pz = 3,5-di-tert-butylpyrazolate), M2(NtBu)4(Me2pz)2Cl2, W(NtBu)2(C2N3(iPr)2)2py2, M(NtBu)2-(CN4CF3)2py2, and W(NtBu)2(PhNNNPh)2 were prepared by various synthetic routes from the starting materials Mo(NtBu)2Cl2, W(NtBu)2(NHtBu)2, and W(NtBu)2Cl2py2. These new complexes were characterized by spectral and analytical methods and by X-ray crystal structure determinations. The volatilities and thermal stabilities were evaluated to determine the potential of the new complexes for use in thin film growth of metal nitride films. Mo(NtBu)2(tBu2pz)2 and W(NtBu)2(tBu2pz)2 were found to have the optimum combination of volatility and thermal stability for application in atomic layer deposition thin film growth procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号