首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
TiO2 has attracted a lot of attention due to its photocatalytic properties and its potential applications in environmental purification and self cleaning coatings, as well as for its high optical transmittance in the visible-IR spectral range, high chemical stability and mechanical resistance. In this paper, we report on the growth of TiO2 nanocrystalline films on Si (1 0 0) substrates by pulsed laser deposition (PLD). Rutile sintered targets were irradiated by KrF excimer laser (λ = 248 nm, pulse duration ∼30 ns) in a controlled oxygen environment and at constant substrate temperature of 650 °C. The structural and morphological properties of the films have been studied for different deposition parameters, such as oxygen partial pressure (0.05-5 Pa) and laser fluence (2- 4 J/cm2). X-ray diffraction (XRD) shows the formation of both rutile and anatase phases; however, it is observed that the anatase phase is suppressed at the highest laser fluences. X-ray photoelectron spectroscopy (XPS) measurements were performed to determine the stoichiometry of the grown films. The surface morphology of the deposits, studied by scanning electron (SEM) and atomic force (AFM) microscopies, has revealed nanostructured films. The dimensions and density of the nanoparticles observed at the surface depend on the partial pressure of oxygen during growth. The smallest particles of about 40 nm diameter were obtained for the highest pressures of inlet gas.  相似文献   

2.
Congruent Zn(7 mol%):Ce:Cu:LiNbO3 single crystal was grown by the Czochralski method in air. The occupation mechanism of the Zn2+ was discussed by an infrared transmittance spectrum. The nonvolatile holographic recording in Zn(7 mol%):Ce:Cu:LiNbO3 single crystal was measured by two-photon fixed method. Zn(7 mol%):Ce:Cu:LiNbO3 single crystals present the faster recording time and higher light-induced scattering resistance ability comparing with Ce:Cu:LiNbO3 single crystals.  相似文献   

3.
A series of bulk polycrystalline Ag-added Fe3O4 with a nominal composition, (Fe3O4)1−xAgx (x is molar fraction) with x=0, 0.1, 0.2, 0.3, 0.4, and 0.5 have been prepared by conventional solid-state reaction. X-ray diffraction patterns show that the pure Fe3O4 sample (x=0) has a single-phase inverse spinel structure, while the Ag-added samples are two-phase composites consisting of a ferrimagnetic Fe3O4 phase and a non-magnetic metal Ag phase. The bright-field transmission electron microscopy images exhibit that the samples are typical granular solids with a porosity of about 22%. The addition of Ag slightly increases the average grain size of the Fe3O4 phase and significantly enhances the MR effect of bulk polycrystalline Fe3O4 samples. Of all the samples the x=0.3 sample has a maximal MR of −5.1% at 300 K in a magnetic field of 1 T, and −6.8% in 5 T, which are approximately three times greater than the corresponding MR values (−1.8% at 1 T and −2.4% at 5 T) of the Fe3O4 sample. This enhancement of the MR can be attributed to the combination effect from the spin-dependent scattering at the interfaces between the Fe3O4 grains and the Ag granules and the spin-polarized tunneling at grain boundaries of Fe3O4 phase of the spin-polarized electrons.  相似文献   

4.
Porous silicon solid supports with pore diameter 0.5-1 μm, infiltrated with Ag nanostructures for surface enhanced Raman scattering (SERS) were prepared according to two procedures: spontaneous Ag+ reduction on the surface of freshly etched porous silicon immersed in Ag+ aqueous solutions, or anchoring colloidal Ag nanoparticles on the surface previously functionalized by aminosilane. Using Rhodamine 6G (RH6G) as analyte the detection limits were of the order of 20 μM and 20 nM with porous silicon metalized by the first and second procedure, respectively. This large increase of sensitivity notwithstanding a reduced surface density of Rhodamine 6G obtained on porous silicon metalized by the second procedure is discussed in terms of better hot spot efficiency and reduced aspecific binding out of the hot regions obtained depositing the colloids on the aminosilane functionalized surface.  相似文献   

5.
Without intentionally heating the substrates, indium tin oxide (ITO) thin films of thicknesses from 72 nm to 447 nm were prepared on polyethylene terephthalate (PET) substrates by DC reactively magnetron sputtering with pre-deposition substrate surfaces plasma cleaning. The dependence of structural, electrical, and optical properties on the films thickness were systematically investigated. It was found that the crystal grain size increases, while the transmittance, the resistivity, and the sheet resistance decreases as the film thickness was increasing. The thickest film (∼447 nm) was found of the lowest sheet resistance 12.6 Ω/square, and its average optical transmittance (400-800 nm) and the 550 nm transmittance was 85.2% and 90.4%, respectively. The results indicate clearly that dependence of the structural, electrical, and optical properties of the films on the film thickness reflected the improvement of the film crystallinity with the film thickness.  相似文献   

6.
Se-Te nanostructured thin films were deposited on glass substrates in the presence of oxygen and argon by thermal evaporation. The properties of Se-Te thin films strongly depend on the deposition method. During the process used, the substrate is cooled to a temperature of 77 K employing liquid nitrogen. The nanostructured thin films of Se100−xTex (where x=4, 8 and 16) are deposited on glass substrate. The surface morphology of the deposited films was investigated through Scanning Electron Microscopy (SEM). The typical size of these nanostructures is in the range 40-100 nm and the length is of the order of several micrometers. The optical parameters i.e. optical gap (Eg), absorption coefficient (α), and extinction coefficient (k) are calculated in the wavelength range 190-1100 nm. It was found that the optical band gap decreased from 3.4 to 2.9 eV when Te concentration was increased in the Se100−xTex nanostructured thin films. The large bandgap may be attributed to the decrease in particle size which clearly exhibits a quantum size effect. XRD analysis was performed to confirm glassy nature of the nanostructured thin films.  相似文献   

7.
Zinc oxide films of 40 nm thickness have been deposited on glass substrates by pulsed laser deposition using an excimer XeCl laser (308 nm) at different substrate temperatures ranging from room temperature to 650 °C. Surface investigations carried out by using atomic force microscopy have shown a strong influence of temperature on the films surface topography. UV-VIS transmittance measurements have shown that our ZnO films are highly transparent in the visible wavelength region, having an average transmittance of ∼90%. The optical band gap of the films was found to be 3.26 eV, which is lower than the theoretical value of 3.37 eV. Besides the normal absorption edge related to the transition between the valence and the conduction band, an additional absorption band was also recorded in the wavelength region around 364 nm (∼3.4 eV). This additional absorption band may be due to excitonic, impurity, and/or quantum size effects. Photoreduction/oxidation in ozone of the ZnO films lead to larger conductivity changes for higher deposition temperature. In conclusion, the ozone sensing characteristics as well as the optical properties of the ZnO thin films deposited by pulsed laser deposition are strongly influenced by the substrate temperature during growth. The sensitivity of the films towards ozone might be enhanced significantly by the control of the films deposition parameters and surface characteristics.  相似文献   

8.
Growth of Ag islands under ultrahigh vacuum condition on air-exposed Si(0 0 1)-(2 × 1) surfaces has been investigated by in-situ reflection high energy electron diffraction (RHEED). A thin oxide is formed on Si via exposure of the clean Si(0 0 1)-(2 × 1) surface to air. Deposition of Ag on this oxidized surface was carried out at different substrate temperatures. Deposition at room temperature leads to the growth of randomly oriented Ag islands while well-oriented Ag islands, with (0 0 1)Ag||(0 0 1)Si, [1 1 0]Ag||[1 1 0]Si, have been found to grow at substrate temperatures of ≥350 °C in spite of the presence of the oxide layer between Ag islands and Si. The RHEED patterns show similarities with the case of Ag deposition on H-passivated Si(0 0 1) surfaces.  相似文献   

9.
Spin reorientation phase transition was observed in 5–10 nm thick polycrystalline Ni films at about 150 K. The extraordinary Hall effect resistivity in these films is enhanced by surface scattering and is of the order of 1 μΩ cm. Magnetization reversal in the vicinity of the transition is very sharp due to the development of the multi-domain structure with the out-of-plane anisotropy. As a result, the field sensitivity of the Hall resistance reaches values exceeding 500 Ω/T.  相似文献   

10.
When the thickness of Ag under layer is 25 nm, the CoPt/Ag film has maximum out-of-plane squareness (S), minimum in-plane squareness (S), and the largest out-of-plane coercivity (Hc⊥), they are 0.95, 0.35, and 15 kOe, respectively. Different volume percent of SiNx ceramic materials were co-sputtered with Co50Pt50 films on the Ag under layer to reduce the grain size of the CoPt film. Comparing the X-ray diffraction pattern of CoPt-SiNx/Ag films without annealing with that of the films which annealed at 600 and 700 °C, it is found that the intensities of CoPt (0 0 1) and CoPt (0 0 2) superlattice lines were reduced after annealing. As the SiNx content is raised to 50 vol%, the particle size of CoPt is reduced to be about 9 nm.  相似文献   

11.
The synthesis by pulsed laser deposition technique of zinc oxide thin films suitable for gas sensing applications is herein reported. The ZnO targets were irradiated by an UV KrF* (λ = 248 nm, τFWHM ∼7 ns) excimer laser source, operated at 2.8 J/cm2 incident fluence value, whilst the substrates consisted of SiO2(0 0 1) wafers heated at 150 °C during the thin films growth process. The experiments were performed in an oxygen dynamic pressure of 10 Pa. Structural and optical properties of the thin films were investigated. The obtained results have demonstrated that the films are c-axis oriented. Their average transmission in the visible-infrared spectral region was found to be about 85%. The equivalent refractive indexes and extinction coefficients were very close to those of the tabulated reference values. Doping with 0.5% Au and coating with 100 pulses of Au clusters caused but a very slight decrease (with a few percent) of both transmission and refractive index values. The coatings with the most appropriate optical properties as waveguides have been selected and their behavior was tested for butane sensing.  相似文献   

12.
Plasma electrolytic oxidation (PEO) of a ZC71/SiC/12p-T6 magnesium metal matrix composite (MMC) is investigated in relation to coating growth and corrosion behaviour. PEO treatment was undertaken at 350 mA cm−2 (rms) and 50 Hz with a square waveform in stirred 0.05 M Na2SiO3.5H2O/0.1 M KOH electrolyte. The findings revealed thick, dense oxide coatings, with an average hardness of 3.4 GPa, formed at an average rate of ∼1 μm min−1 for treatment times up to 100 min and ∼0.2 μm min−1 for later times. The coatings are composed mainly of MgO and Mg2SiO4, with an increased silicon content in the outer regions, constituting <10% of the coating thickness. SiC particles are incorporated into the coating, with formation of a silicon-rich layer at the particle/coating interface due to exposure to high temperatures during coating formation. The distribution of the particles in the coating indicated growth of new oxide at the metal/coating interface. The corrosion rate of the MMC in 3.5% NaCl is reduced by approximately two orders of magnitude by the PEO treatment.  相似文献   

13.
Indium tin oxide (ITO) films approximately 120 nm thick were deposited onto unheated glass substrates by using reactive thermal evaporation (RTE) and in situ post-evaporation annealing in oxygen. We show that this simplified method can be used to produce high quality ITO thin films with low electrical resistivity (10−3 Ω cm) and high transmittance (approximately 80% at 550 nm). The refractive index is approximately 2.0 and the direct optical band gap of the films (above 3.0 eV) is in good agreement with previously reported values. Since this deposition method does not require heating the substrates or furnace annealing at high temperatures, it can be advantageous when it is necessary to decrease the thermal budget on underlying devices or layers.  相似文献   

14.
Zinc oxide doped with Al (AZO) thin films were prepared on borosilicate glass substrates by dip and dry technique using sodium zincate bath. Effects of doping on the structural and optical properties of ZnO film were investigated by XRD, EPMA, AFM, optical transmittance, PL and Raman spectroscopy. The band gap for ZnO:Al (5.0 at. wt.%) film was found to be 3.29 eV compared with 3.25 eV band gap for pure ZnO film. Doping with Al introduces aggregation of crystallites to form micro-size clusters affecting the smoothness of the film surface. Al3+ ion was found to promote chemisorption of oxygen into the film, which in turn affects the roughness of the sample. Six photoluminescence bands were observed at 390, 419, 449, 480, 525 and 574 nm in the emission spectra. Excitation spectra of ZnO film showed bands at 200, 217, 232 and 328 nm, whereas bands at 200, 235, 257 and 267 nm were observed for ZnO:Al film. On the basis of transitions from conduction band or deep donors (CB, Zni or VOZni) to valence band and/or deep acceptor states (VB, VZn or Oi or OZn), a tentative model has been proposed to explain the PL spectra. Doping with Al3+ ions reduced the polar character of the film. This has been confirmed from laser Raman studies.  相似文献   

15.
Silver nanocrystallites are obtained through immersion of porous silicon samples in AgNO3 solutions and a successive thermal annealing. The efficiency of nanostructures as surface enhanced Raman scattering (SERS) substrates is checked on cyanine-based dyes and horseradish peroxidase, evidencing detectable concentrations as low as 10−7 to 10−8 M. The substrate efficiency is strictly related to the Ag particle morphology, which could yield to either local surface plasmons (LSP) coupled to individual particles or to inter-particle short-range interaction.  相似文献   

16.
Magnesium is one of the most important bivalent ions associated with biological apatite. A series of magnesium-substituted calcium apatite coatings (Ca10−xMgx)(PO4)6(OH)2, where x = 0, 0.50, 1.00, 1.50 and 2.00, are synthesized onto Ti6Al4V substrate by sol-gel dip-coating method to determine how magnesium influences the synthesis and the resulting structural and biological properties. X-ray diffraction (XRD) analysis shows that the incorporation of magnesium helps formation of Mg-containing β-TCP (β-TCMP) phase. X-ray photoelectron spectroscopy (XPS) is used to study the chemical composition and the results show that the apatite structure can only host magnesium less than ∼2.4 wt.% beyond which magnesium aggregates on the surfaces. The incorporation of magnesium slows down the dissolution of Ca2+ from the coating. The in vitro behavior of the coatings is evaluated with human osteosarcoma MG63 cells for cell morphology and proliferation. Similar cell morphologies are observed on all coatings. The cell proliferation results show that the incorporation of magnesium up to x = 2 has no adverse effect on cell growth.  相似文献   

17.
Optical limiting (OL) properties of CdO nanowires in water and ethanol were investigated by using nanosecond laser pulses at 532 nm. Experimental results show that suspension of CdO nanowires in ethanol exhibits better OL property than solution of C60 in toluene and suspension of CdO nanowires in water. The dominant mechanism for the observed enhanced optical limiting in ethanol suspensions of CdO nanowires is due to nonlinear scattering.  相似文献   

18.
Wetting characteristics of micro-nanorough substrates of aluminum and smooth silicon substrates have been studied and compared by depositing hydrocarbon and fluorinated-hydrocarbon coatings via plasma enhanced chemical vapor deposition (PECVD) technique using a mixture of Ar, CH4 and C2F6 gases. The water contact angles on the hydrocarbon and fluorinated-hydrocarbon coatings deposited on silicon substrates were found to be 72° and 105°, respectively. However, the micro-nanorough aluminum substrates demonstrated superhydrophobic properties upon coatings with fluorinated-hydrocarbon providing a water contact angle of ∼165° and contact angle hysteresis below 2° with water drops rolling off from those surfaces while the same substrates showed contact angle of 135° with water drops sticking on those surfaces. The superhydrophobic properties is due to the high fluorine content in the fluorinated-hydrocarbon coatings of ∼36 at.%, as investigated by X-ray photoelectron spectroscopy (XPS), by lowering the surface energy of the micro-nanorough aluminum substrates.  相似文献   

19.
Thin films of pentacene (C22H14) have become widely used in the field of organic electronics. Here films of C22H14 of thickness ranging from submonolayer to multilayer were thermally deposited on Ag(1 1 1) surface. The determination of molecular geometry in pentacene films on Ag(1 1 1) studied by X-ray absorption at different stages of growth up to one monolayer is presented.XAS spectra at the C K-edge were collected as a function of the direction of the electric field at the surface. The different features of the spectra were assigned to resonances related to the various molecular unoccupied states by the comparison with the absorption coefficient of the pentacene gas phase. The transitions involving antibonding π states show a pronounced angular dependence for all the measured coverages, from submonolayer to multilayer. The spectra analysis indicates a nearly planar chemisorption of the first pentacene layer with a tilt angle of 10°.  相似文献   

20.
ZnO thin films were deposited by thermal evaporation of a ZnO powder. The as-deposited films are dark brown, rich zinc and present a low transmittance. Then, these films were annealed in air atmosphere at different temperatures between 100 and 400 °C. Their microstructure and composition were studied using XRD and RBS measurements respectively. By increasing the temperature, it was found that film oxidation starts at 250 °C. XRD peaks related to ZnO appear and peaks related to Zn decrease. At 300 °C, zinc was totally oxidised and the films became totally transparent. The electrical conductivity measurement that were carried out in function of the annealing temperature showed the transition from highly conductive Zn thin film to a lower conductive ZnO thin film. The optical gap (Eg) was deduced from the UV-vis transmittance, and its variation was linked to the formation of ZnO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号