首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thionine (TH) adsorbed on multiwalled carbon nanotubes (MWCNTs) increases the load and dispersion of platinum nanoparticles (PtNPs) generated by chemical reduction of H2PtCl6 with NaBH4. Under the optimum conditions, the PtNPs‐TH‐MWCNTs/Au electrode electrocatalyzed the reduction and oxidation of H2O2 with high sensitivity, and after glucose oxidase (GOx) adsorption it responded to glucose concentration with a sensitivity of 0.14 A M?1 cm?2. The cyclic voltammetric cathodic peak current for NO2? reduction on PtNPs‐TH‐MWCNTs/Au responded linearly to NO2? concentration from 0.5 to 150 µM, with a sensitivity of 5.52 A M?1 cm?2 and a detection limit of 0.2 µM.  相似文献   

2.
5‐Azido‐2‐methoxy‐1,3‐xylyl‐18‐crown‐5 has been prepared by reacting p‐toluenesulfonyl azide with the carbanion generated from the reaction of 5‐bromo‐2‐methoxy‐1,3‐xylyl‐18‐crown‐5 with n‐butyl lithium. The asymmetric N3 stretch of this product has been observed as a single band at 2110 cm?1 in dichloromethane solution. Addition of solid NaSCN, KSCN and CsSCN shifts this band to 2115, 2113 and 2112 cm?1, respectively. Computational studies of this azide at the B3LYP‐6‐31G* level in the presence and absence of Na+ predicted these bands to be at 2173 cm?1 and 2184 cm?1. For the salt‐containing solutions, additional bands were observed at 2066 cm?1, 2056 cm?1 and 2055 cm?1, respectively, which are in the range expected for CN stretches. The X‐ray structure of this azide has been determined. The terminal and internal N? N bond lengths were found to be 1.127(2) and 1.245(2) Δ, respectively, which is the usual pattern for aromatic azides. The crown ether is looped over the face of the aromatic ring resulting in an angle of 38.94° between the plane defined by the aromatic ring and that defined by the five ring oxygen atoms. In addition, the CH3 group is rotated out of the plane of the phenyl ring with C1‐C18‐O181‐C182 and C17‐C18‐O181‐C182 dihedral angles of 93.81(14)° and ‐90.54(14)°, respectively.  相似文献   

3.
7‐(4‐Fluorophenyl) and 7‐phenyl‐substituted 1,3‐diphenyl‐1,4‐dihydro‐1,2,4‐benzotriazin‐4‐yl radicals were characterized by X‐ray diffraction analysis and variable‐temperature magnetic susceptibility studies. The radicals pack in 1D π stacks of equally spaced slipped radicals with interplanar distances of 3.59 and 3.67 Å and longitudinal angles of 40.97 and 43.47°, respectively. Magnetic‐susceptibility studies showed that both radicals exhibit antiferromagnetic interactions. Fitting the magnetic data revealed that the behavior is consistent with 1D regular linear antiferromagnetic chain with J=?12.9 cm?1, zJ′=?0.4 cm?1, g=2.0069 and J=?11.8 cm?1, zJ′=?6.5 cm?1, g=2.0071, respectively. Magnetic‐exchange interactions in benzotriazinyl radicals are sensitive to the degree of slippage, and inter‐radical separation and subtle changes in structure alter the fine balance between ferro‐ and antiferromagnetic interactions.  相似文献   

4.
Adsorption of carbon dioxide on H‐ZSM‐5 zeolite (Si:Al=11.5:1) was studied by means of variable‐temperature FT‐IR spectroscopy, in the temperature range of 310–365 K. The adsorbed CO2 molecules interact with the zeolite Brønsted‐acid OH groups bringing about a characteristic red‐shift of the O? H stretching band from 3610 cm?1 to 3480 cm?1. Simultaneously, the ν3 mode of adsorbed CO2 is observed at 2345 cm?1. From the variation of integrated intensity of the IR absorption bands at both 3610 and 2345 cm?1, upon changing temperature (and CO2 equilibrium pressure), the standard adsorption enthalpy of CO2 on H‐ZSM‐5 is ΔH0=?31.2(±1) kJ mol?1 and the corresponding entropy change is ΔS0=?140(±10) J mol?1 K?1. These results are discussed in the context of available data for carbon dioxide adsorption on other protonic, and also alkali‐metal exchanged, zeolites.  相似文献   

5.
Relative rate coefficients for the reactions of OH with 3‐methyl‐2‐cyclohexen‐1‐one and 3,5,5‐trimethyl‐2‐cyclohexen‐1‐one have been determined at 298 K and atmospheric pressure by the relative rate technique. OH radicals were generated by the photolysis of methyl nitrite in synthetic air mixtures containing ppm levels of nitric oxide together with the test and reference substrates. The concentrations of the test and reference substrates were followed by gas chromatography. Based on the value k(OH + cyclohexene) = (6.77 ± 1.35) × 10?11 cm3 molecule?1 s?1, rate coefficients for k(OH + 3‐methyl‐2‐cyclohexen‐1‐one) = (3.1 ± 1.0) × 10?11 and k(OH + 3,5,5‐trimethyl‐2‐cyclohexen‐1‐one) = (2.4 ± 0.7) × 10?11 cm3 molecule?1 s?1 were determined. To test the system we also measured k(OH + isoprene) = (1.11 ± 0.23) × 10?10 cm3 molecule?1 s?1, relative to the value k(OH + (E)‐2‐butene) = (6.4 ± 1.28) × 10?11 cm3 molecule?1 s?1. The results are discussed in terms of structure–activity relationships, and the reactivities of cyclic ketones formed in the photo‐oxidation of monoterpene are estimated. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 34: 7–11, 2002  相似文献   

6.
The imidoylnitrene 8 , N‐methyl‐C‐phenylimidoylnitrene, has been generated by laser photolysis of 1‐methyl‐5‐phenyltetrazole 6 at 5 K and characterized by its ESR spectrum (|D/hc|=0.9602, |E/hc|=0.0144 cm?1). In addition, the triplet excited states of 6 and of 2‐methyl‐5‐phenyltetrazole 11 were also observed by ESR spectroscopy in the 5 K matrices ( 6 : |D/hc|=0.123 cm?1, E/hc=0.0065 cm?1, 11 : |D/hc|=0.126 cm?1, |E/hc|=0.0056 cm?1). The imidoylnitrene 8 is unstable both thermally (disappearing at 80 K) and photochemically (disappearing on continued irradiation at 266 nm). Methyl(phenyl)carbodiimide is the end product of photolysis.  相似文献   

7.
The gas permeability and n‐butane solubility in glassy poly(1‐trimethylgermyl‐1‐propyne) (PTMGP) are reported. As synthesized, the PTMGP product contains two fractions: (1) one that is insoluble in toluene and soluble only in carbon disulfide (the toluene‐insoluble polymer) and (2) one that is soluble in both toluene and carbon disulfide (the toluene‐soluble polymer). In as‐cast films, the gas permeability and n‐butane solubility are higher in films prepared from the toluene‐soluble polymer (particularly in those films cast from toluene) than in films prepared from the toluene‐insoluble polymer and increase to a maximum in both fractions after methanol conditioning. For example, in as‐cast films prepared from carbon disulfide, the oxygen permeability at 35 °C is 330 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐soluble polymer and 73 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐insoluble polymer. After these films are conditioned in methanol, the oxygen permeability increases to 5200 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐soluble polymer and 6200 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐insoluble polymer. The rankings of the fractional free volume and nonequilibrium excess free volume in the various PTMGP films are consistent with the measured gas permeability and n‐butane solubility values. Methanol conditioning increases gas permeability and n‐butane solubility of as‐cast PTMGP films, regardless of the polymer fraction type and casting solvent used, and minimizes the permeability and solubility differences between the various films (i.e., the permeability and solubility values of all conditioned PTMGP films are similar). © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2228–2236, 2002  相似文献   

8.
Rate constants for the reactions of Cl atoms with two cyclic dienes, 1,4‐cyclohexadiene and 1,5‐cyclooctadiene, have been determined, at 298 K and 800 Torr of N2, using the relative rate method, with n‐hexane and 1‐butene as reference molecules. The concentrations of the organics are followed by gas chromatographic analysis. The ratios of the rate constants of reactions of Cl atoms with 1,4‐cyclohexadiene and 1,5‐cyclooctadiene to that with n‐hexane are measured to be 1.29 ± 0.06 and 2.19 ± 0.32, respectively. The corresponding ratios with respect to 1‐butene are 1.50 ± 0.16 and 2.36 ± 0.38. The absolute values of the rate constants of the reaction of Cl atom with n‐hexane and 1‐butene are considered as (3.15 ± 0.40) × 10?10 and (3.21 ± 0.40) × 10? 10 cm3 molecule?1s?1, respectively. With these, the calculated values are k(Cl + 1,4‐cyclohexadiene) = (4.06 ± 0.55) × 10?10 and k(Cl + 1,5‐cyclooctadiene) = (6.90 ± 1.33) × 10?10 cm3 molecule?1 s?1 with respect to n‐hexane. The rate constants determined with respect to 1‐butene are marginally higher, k(Cl + 1,4‐cyclohexadiene) = (4.82 ± 0.80) × 10? 10 and k(Cl + 1,5‐cyclooctadiene) = (7.58 ± 1.55) × 10? 10 cm3 molecule?1 s?1. The experiments for each molecule were repeated three to five times, and the slopes and the rate constants given above are the average values of these measurements, with 2σ as the quoted error, including the error in the reference rate constant. The relative rate ratios of 1,4‐cyclohexadiene with both the reference molecules are found to be higher in the presence of oxygen, and a marginal increase is observed in the case of 1,5‐cyclooctadiene. Benzene is identified as one major product in the case of 1,4‐cyclohexadiene. Considering that the cyclohexadienyl radical, a product of the hydrogen abstraction reaction, is quantitatively converted to benzene in the presence of oxygen, the fraction of Cl atoms that reacts by abstraction is estimated to be 0.30 ± 0.04. The atmospheric implications of the results are discussed. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 431–440, 2011  相似文献   

9.
This study reports the catalytic oxidation and detection of tea polyphenols (TPs) at glassy‐carbon electrode modified with multiwalled carbon nanotubes‐chitosan (MWCNTs‐CS) film. The adsorption of TPs at the surface of the MWCNTs through π–π conjugation prevents the aggregation of nanotubes and induces a stable MWCNTs suspension in water over 30 days. Based on the adsorptive accumulation of polyphenols at MWCNTs, TPs is sensitively and selectively detected by adsorptive stripping voltammetry. The accumulation conditions and pH effect on the adsorptive stripping detection were examined. The linear range was found to be 100 to 1000 mg L?1 with a detection limit of 10 mg L?1 (S/N=3) for 2.5 min accumulation. Additionally, the MWCNTs‐CS electrode is easily renewed by applying positive potential to remove the adsorbed TPs. This method was successfully applied to determine TPs in commercially available teas with satisfied result compared with that of conventional spectrometric analysis.  相似文献   

10.
Cyclometalated IrIII complexes with acetylide ppy and bpy ligands were prepared (ppy=2‐phenylpyridine, bpy=2,2′‐bipyridine) in which naphthal ( Ir‐2 ) and naphthalimide (NI) were attached onto the ppy ( Ir‐3 ) and bpy ligands ( Ir‐4 ) through acetylide bonds. [Ir(ppy)3] ( Ir‐1 ) was also prepared as a model complex. Room‐temperature phosphorescence was observed for the complexes; both neutral and cationic complexes Ir‐3 and Ir‐4 showed strong absorption in the visible range (ε=39600 M ?1 cm?1 at 402 nm and ε=25100 M ?1 cm?1 at 404 nm, respectively), long‐lived triplet excited states (τT=9.30 μs and 16.45 μs) and room‐temperature red emission (λem=640 nm, Φp=1.4 % and λem=627 nm, Φp=0.3 %; cf. Ir‐1 : ε=16600 M ?1 cm?1 at 382 nm, τem=1.16 μs, Φp=72.6 %). Ir‐3 was strongly phosphorescent in non‐polar solvent (i.e., toluene), but the emission was completely quenched in polar solvents (MeCN). Ir‐4 gave an opposite response to the solvent polarity, that is, stronger phosphorescence in polar solvents than in non‐polar solvents. Emission of Ir‐1 and Ir‐2 was not solvent‐polarity‐dependent. The T1 excited states of Ir‐2 , Ir‐3 , and Ir‐4 were identified as mainly intraligand triplet excited states (3IL) by their small thermally induced Stokes shifts (ΔEs), nanosecond time‐resolved transient difference absorption spectroscopy, and spin‐density analysis. The complexes were used as triplet photosensitizers for triplet‐triplet annihilation (TTA) upconversion and quantum yields of 7.1 % and 14.4 % were observed for Ir‐2 and Ir‐3 , respectively, whereas the upconversion was negligible for Ir‐1 and Ir‐4 . These results will be useful for designing visible‐light‐harvesting transition‐metal complexes and for their applications as triplet photosensitizers for photocatalysis, photovoltaics, TTA upconversion, etc.  相似文献   

11.
Two furan‐flanked polymers poly{3,6‐difuran‐2‐yl‐2,5‐di(2‐octyldodecyl)‐pyrrolo[3,4‐c]pyrrole‐1,4‐dione‐alt‐thienylenevinylene} (PDVFs), with a highly π‐extended diketopyrrolopyrrole backbone, are developed for solution‐processed high‐performance polymer field‐effect transistors (FETs). Atomic force microscopy and grazing incidence X‐ray scattering analyses indicate that PDVF‐8 and PDVF‐10 films exhibit a similar nodular morphology with the ultrasmall lamellar distances of 16.84 and 18.98 Å, respectively. When compared with the reported polymers with the same alkyl substitutes, this is the smallest d‐spacing value observed to date. This closed lamellar crystallinity facilitates charge carrier transport. Therefore, polymer thin‐film transistors fabricated from as‐spun PDVF‐8 films exhibit a high hole mobility exceeding 1.0 cm2 V?1 s?1 with a current on/off ratio above 106. After annealing treatment at 100 °C in air, the highest hole mobility of PDVF‐8‐based FETs was significantly improved to 1.90 cm2 V?1 s?1, which is among the highest values of the reported FET devices fabricated from polymer thin films based on this mild annealing temperature. In contrast, long alkyl‐substituted PDVF‐10 exhibited a relatively low hole mobility of 1.65 cm2 V?1 s?1 mainly resulting from low molecular weight. This work demonstrated that PDVFs would be promising semiconductors for developing cost‐effective and large‐scale production of flexible organic electronics. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1970–1977  相似文献   

12.
Four enantiopure 1,3‐diethynylallenes (DEAs) with OH termini were attached to the rim of a resorcin[4]arene cavitand. The system undergoes conformational switching between a cage form, closed by a circular H‐bonding array, and an open form, with the tertiary alcohol groups reaching outwards. The cage form is predominant in apolar solvents, and the open conformation in small, polar solvents. Both states were confirmed in solution and in X‐ray co‐crystal structures. ECD spectra of the alleno‐acetylenic cages (AACs) are highly conformation sensitive, the longest wavelength Cotton effect at 304 nm switches from Δ?=+191 m ?1 cm?1 for open (P)4‐AAC?acetonitrile to Δ?=?691 m ?1 cm?1 (ΔΔ?=882 m ?1 cm?1) for closed (P)4‐AAC?cyclohexane. Complete chiral resolution of (±)‐trans‐1,2‐dimethylcyclohexane was found in the X‐ray structures, with (P)4‐AAC exclusively bound to the (R,R)‐ and (M)4‐AAC to the (S,S)‐guest. Guest inclusion occurs in a higher energy diaxial conformation.  相似文献   

13.
Recent photofragment fluorescence excitation (PHOFEX) spectroscopy experiments have observed the Ã1A″ singlet excited state of isocyanogen (CNCN) for the first time. The observed spectrum is not completely assigned and significant questions remain about the excited states of this system. To provide insight into the energetically accessible excited states of CNCN, optimized geometries, harmonic vibrational frequencies, and excitation energies for the first three singlet excited states are determined using equation‐of‐motion coupled‐cluster theory with singles and doubles (EOM‐CCSD) and correlation‐consistent basis sets. Additionally, excited state coupled‐cluster methods which approximate the contributions from triples (CC3) are utilized to estimate the effect of higher‐order correlation on the energy of each excited state. For the Ã1A″ state, our best estimate for T0 is about 42,200 cm?1, in agreement with the experimentally estimated upper limit for the zero‐point level of 42,523 cm?1. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

14.
We present a detailed study of Raman spectroscopy and photoluminescence measurements on Li‐doped ZnO nanocrystals with varying lithium concentrations. The samples were prepared starting from molecular precursors at low temperature. The Raman spectra revealed several sharp lines in the range of 100–200 cm?1, which are attributed to acoustical phonons. In the high‐energy range two peaks were observed at 735 cm?1 and 1090 cm?1. Excitation‐dependent Raman spectroscopy of the 1090 cm?1 mode revealed resonance enhancement at excitation energies around 2.2 eV. This energy coincides with an emission band in the photoluminescence spectra. The emission is attributed to the deep lithium acceptor and intrinsic point defects such as oxygen vacancies. Based on the combined Raman and PL results, we introduce a model of surface‐bound LiO2 defect sites, that is, the presence of Li+O2? superoxide. Accordingly, the observed Raman peaks at 735 cm?1 and 1090 cm?1 are assigned to Li? O and O? O vibrations of LiO2.  相似文献   

15.
Efficient and durable nonprecious metal electrocatalysts for the oxygen reduction (ORR) are highly desirable for several electrochemical devices, including anion exchange membrane fuel cells (AEMFCs). Here, a 2D planar electrocatalyst with CoOx embedded in nitrogen‐doped graphitic carbon (N‐C‐CoOx) was created through the direct pyrolysis of a metal–organic complex with a NaCl template. The N‐C‐CoOx catalyst showed high ORR activity, indicated by excellent half‐wave (0.84 V vs. RHE) and onset (1.01 V vs. RHE) potentials. This high intrinsic activity was also observed in operating AEMFCs where the kinetic current was 100 mA cm?2 at 0.85 V. When paired with a radiation‐grafted ETFE powder ionomer, the N‐C‐CoOx AEMFC cathode was able to achieve extremely high peak power density (1.05 W cm?2) and mass transport limited current (3 A cm?2) for a precious metal free electrode. The N‐C‐CoOx cathode also showed good stability over 100 hours of operation with a voltage decay of only 15 % at 600 mA cm?2 under H2/air (CO2‐free) reacting gas feeds. The N‐C‐CoOx cathode catalyst was also paired with a very low loading PtRu/C anode catalyst, to create AEMFCs with a total PGM loading of only 0.10 mgPt‐Ru cm?2 capable of achieving 7.4 W mg?1PGM as well as supporting a current of 0.7 A cm?2 at 0.6 V with H2/air (CO2 free)—creating a cell that was able to meet the 2019 U.S. Department of Energy initial performance target of 0.6 V at 0.6 A cm?2 under H2/air with a PGM loading <0.125 mg cm?2 with AEMFCs for the first time.  相似文献   

16.
The gas‐phase reactions of the NO3 radical with 2‐methylthiophene, 3‐methylthiophene, and 2,5‐dimethylthiophene have been studied, using relative and absolute methods at 298 K. Determination of relative rate was performed using Teflon collapsible bag as the reaction chamber and gas chromatography as the analytical tool. For the absolute method, experiments were carried out using fast‐flow‐discharge technique with detection of NO3 by laser‐induced fluorescence. The temperature dependence was studied by the absolute technique for the reactions of NO3 with 2‐methylthiophene and 3‐methylthiophene in the range 263–335 K. The proposed Arrhenius expressions for the reaction of the nitrate radical with 2‐methylthiophene and 3‐methylthiophene are k = (4 ± 2) × 10?16 exp[?(2200 ± 100)/T]] cm3 molecule?1 s?1 and k = (3 ± 2) × 10?15 exp[?(1700 ± 200)/T]] cm3 molecule?1 s?1, respectively. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 286–293, 2003  相似文献   

17.
We report an innovative supramolecular architecture for bienzymatic glucose biosensing based on the non‐covalently functionalization of multi‐walled carbon nanotubes (MWCNTs) with two proteins, glucose oxidase (GOx) (to recognize glucose) and avidin (to allow the specific anchoring of biotinylated horseradish peroxidase (b‐HRP)). The optimum functionalization was obtained by sonicating for 10 min 0.50 mg mL?1 MWCNTs in a solution of 2.00 mg mL?1 GOx+1.00 mg mL?1avidin prepared in 50 : 50 v/v ethanol/water. The sensitivity to glucose for glassy carbon electrodes (GCE) modified with MWCNTs‐GOx‐avidin dispersion and b‐HRP (GCE/MWCNTs‐GOx‐avidin/b‐HRP), obtained from amperometric experiments performed at ?0.100 V in the presence of 5.0×10?4 M hydroquinone, was (4.8±0.3) μA mM?1 (r2=0.9986) and the detection limit was 1.2 μM. The reproducibility for 5 electrodes using the same MWCNTs/GOx‐avidin dispersion was 4.0 %, while the reproducibility for 3 different dispersions and 9 electrodes was 6.0 %. The GCE/MWCNT‐GOx‐avidin/b‐HRP was successfully used for the quantification of glucose in a pharmaceutical product and milk.  相似文献   

18.
X‐ray studies show that 1,3‐diphenyl‐7‐(thien‐2‐yl)‐1,4‐dihydro‐1,2,4‐benzotriazin‐4‐yl ( 6 ) adopts a distorted, slipped π‐stacked structure of centrosymmetric dimers with alternate short and long interplanar distances (3.48 and 3.52 Å). Cyclic voltammograms of 7‐(thien‐2‐yl)benzotriazin‐4‐yl 6 show two fully reversible waves that correspond to the ?1/0 and 0/+1 processes. EPR and DFT studies on radical 6 indicate that the spin density is mainly delocalized over the triazinyl fragment. Magnetic susceptibility measurements show that radical 6 obeys Curie–Weiss behavior in the 5–300 K region with C=0.378 emu K mol?1 and θ=+4.72 K, which is consistent with ferromagnetic interactions between S=1/2 radicals. Fitting the magnetic susceptibility revealed the behavior is consistent with an alternating ferromagnetic chain (g=2.0071, J1=+7.12 cm?1, J2=+1.28 cm?1).  相似文献   

19.
The rate constants of the gas‐phase reaction of OH radicals with trans‐2‐hexenal, trans‐2‐octenal, and trans‐2‐nonenal were determined at 298 ± 2 K and atmospheric pressure using the relative rate technique. Two reference compounds were selected for each rate constant determination. The relative rates of OH + trans‐2‐hexenal versus OH + 2‐methyl‐2‐butene and β‐pinene were 0.452 ± 0.054 and 0.530 ± 0.036, respectively. These results yielded an average rate constant for OH + trans‐2‐hexenal of (39.3 ± 1.7) × 10?12 cm3 molecule?1 s?1. The relative rates of OH+trans‐2‐octenal versus the OH reaction with butanal and β‐pinene were 1.65 ± 0.08 and 0.527 ± 0.032, yielding an average rate constant for OH + trans‐2‐octenal of (40.5 ± 2.5) × 10?12 cm3 molecule?1 s?1. The relative rates of OH+trans‐2‐nonenal versus OH+ butanal and OH + trans‐2‐hexenal were 1.77 ± 0.08 and 1.09 ± 0.06, resulting in an average rate constant for OH + trans‐2‐nonenal of (43.5 ± 3.0) × 10?12 cm3 molecule?1 s?1. In all cases, the errors represent 2σ (95% confidential level) and the calculated rate constants do not include the error associated with the rate constant of the OH reaction with the reference compounds. The rate constants for the hydroxyl radical reactions of a series of trans‐2‐aldehydes were compared with the values estimated using the structure activity relationship. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 483–489, 2009  相似文献   

20.
Thick, uniform, easily processed, highly conductive polymer films are desirable as electrodes for solar cells as well as polymer capacitors. Here, a novel scalable strategy is developed to prepare highly conductive thick poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate (HCT‐PEDOT:PSS) films with layered structure that display a conductivity of 1400 S cm?1 and a low sheet resistance of 0.59 ohm sq?1. Organic solar cells with laminated HCT‐PEDOT:PSS exhibit a performance comparable to the reference devices with vacuum‐deposited Ag top electrodes. More importantly, the HCT‐PEDOT:PSS film delivers a specific capacitance of 120 F g?1 at a current density of 0.4 A g?1. All‐solid‐state flexible symmetric supercapacitors with the HCT‐PEDOT:PSS films display a high volumetric energy density of 6.80 mWh cm?3 at a power density of 100 mW cm?3 and 3.15 mWh cm?3 at a very high power density of 16160 mW cm?3 that outperforms previous reported solid‐state supercapacitors based on PEDOT materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号