共查询到20条相似文献,搜索用时 15 毫秒
1.
DRAG FORCE IN DENSE GAS—PARTICLE TWO—PHASE FLOW 总被引:1,自引:0,他引:1
Numerical simulations of flow over a stationary particle in a dense gas-particle two-phase flow have been carried out for small Reynolds numbers (less than 100). In order to study the influence of the particles interaction on the drag force, three particle arrangements have been tested: a single particle, two particles placed in the flow direction and many particles located regularly in the flow field. The Navier-Stokes equations are discretized in the three-dimensional space using finite volume method. For the first and second cases, the numerical results agree reasonably well with the data in literature. For the third case, i.e., the multiparticle case, the influence of the particle volume fraction and Reynolds numbers on the drag force has been investigated. The results show that the computational values of the drag ratio agree approximately with the published results at higher Reynolds numbers (from 34.2 to 68.4), but there is a large difference between them at small Reynolds numbers. The project supported by the Special Funds for Major State Basis Research Projects in China (G19990222). 相似文献
2.
H. JIN 《应用数学和力学(英文版)》2016,37(1):97-106
This paper studies governing equations describing the turbulent fluid mixing behavior effectively. The goal is to propose a closure for compressible multiphase flow models with transport and surface tension, which satisfy the boundary conditions at the mixing zone edges, the conservation requirements, and an entropy inequality constraint. Implicitness of positivity for the entropy of averaging requires entropy inequality as opposed to conservation of entropy for microphysically adiabatic processes. 相似文献
3.
P.K. Ptasinski F.T.M. Nieuwstadt B.H.A.A. van den Brule M.A. Hulsen 《Flow, Turbulence and Combustion》2001,66(2):159-182
In this paper we report on (two-component) LDV experiments in a fully developed turbulent pipe flow with a drag-reducing polymer
(partially hydrolyzed polyacrylamide) dissolved in water. The Reynolds number based on the mean velocity, the pipe diameter
and the local viscosity at the wall is approximately 10000. We have used polymer solutions with three different concentrations
which have been chosen such that maximum drag reduction occurs. The amount of drag reduction found is 60–70%. Our experimental
results are compared with results obtained with water and with a very dilute solution which exhibits only a small amount of
drag reduction.
We have focused on the observation of turbulence statistics (mean velocities and turbulence intensities) and on the various
contributions to the total shear stress. The latter consists of a turbulent, a solvent (viscous) and a polymeric part. The
polymers are found to contribute significantly to the total stress. With respect to the mean velocity profile we find a thickening
of the buffer layer and an increase in the slope of the logarithmic profile. With respect to the turbulence statistics we
find for the streamwise velocity fluctuations an increase of the root mean square at low polymer concentration but a return
to values comparable to those for water at higher concentrations. The root mean square of the normal velocity fluctuations
shows a strong decrease. Also the Reynolds (turbulent) shear stress and the correlation coefficient between the stream wise
and the normal components are drastically reduced over the entire pipe diameter. In all cases the Reynolds stress stays definitely
non-zero at maximum drag reduction. The consequence of the drop of the Reynolds stress is a large polymer stress, which can
be 60% of the total stress. The kinetic-energy balance of the mean flow shows a large transfer of energy directly to the polymers
instead of the route by turbulence. The kinetic energy of the turbulence suggests a possibly negative polymeric dissipation
of turbulent energy.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
4.
Shock wave interaction with a sphere is one of the benchmark tests in shock dynamics. However, unlike wind tunnel experiments, unsteady drag force on a sphere installed in a shock tube have not been measured quantitatively. This paper presents an experimental and numerical study of the unsteady drag force acting on a 80 mm diameter sphere which was vertically suspended in a 300 mm x 300 mm vertical shock tube and loaded with a planar shock wave of M
s
= 1.22 in air. The drag force history on the sphere was measured by an accelerometer installed in it. Accelerometer output signals were subjected to deconvolution data processing, producing a drag history comparable to that obtained by solving numerically the Navier-Stokes equations. A good agreement was obtained between the measured and computed drag force histories. In order to interpret the interaction of shock wave over the sphere, high speed video recordings and double exposure holographic interferometric observations were also conducted. It was found that the maximum drag force appeared not at the time instant when the shock arrived at the equator of the sphere, but at some earlier time before the transition of the reflected shock wave from regular to Mach reflection took place. A negative value of the drag force was observed, even though for a very short duration of time, when the Mach stem of the transmitted shock wave relfected and focused at the rear stagnation point of the sphere.Received: 31 March 2003, Accepted: 7 July 2003, Published online: 2 September 2003 相似文献
5.
等边布置三圆柱绕流的数值分析 总被引:4,自引:0,他引:4
用有限元方法对于等边三角形布置的三个相同直径的二维圆柱绕流问题进行了数值模拟,分别求得了在不同间距比下的流场分布和各圆柱的升、阻力系数以及斯托哈罗数。计算结果表明,小间距比情形下三圆柱之间的干扰是严重的,流动并不对称于中心轴线,而是偏向下游的某个圆柱。数值计算结果与有关文献和实验进行了对比,结果令人满意。 相似文献
6.
7.
A. N. Volkov 《Fluid Dynamics》2009,44(1):141-157
A three-dimensional rarefied-gas flow past a spinning sphere in the transitional and near-continuum flow regimes is studied numerically. The rarefaction and compressibility effects on the lateral (Magnus) force and the aerodynamic torque exerted on the sphere are investigated for the first time. The coefficients of the drag force, the Magnus force, and the aerodynamic torque are found for Mach numbers ranging from 0.1 to 2 and Knudsen numbers ranging from 0.05 to 20. In the transitional regime, at a certain Knudsen number depending on the Mach number the Magnus force direction changes. This change is attributable to the increase in the role of normal stresses and the decrease in the contribution of the shear stresses to the Magnus force with decrease in the Knudsen number. A semi-empirical formula for the calculation of the Magnus force coefficient in the transitional flow regime is proposed. 相似文献
8.
J. Honerkamp 《Rheologica Acta》1989,28(5):363-371
Experimental data are always noisy and often incomplete. This leads to ambiguities if one wants to infer from the data some functions, which are related to the measured quantity through an integral equation of the first kind. In rheology many of such so-called ill-posed problems appear. Two techniques to treat such problems, the regularization method and the maximum entropy method, are applied to the determination of the relaxation spectrum from data of small oscillatory shear flow. With simulated data from a reference spectrum it is discussed how the inferred spectrum depends on the region, in which data are available. It turns out that information about the asymptotic behavior of the measured quantity can be of great help in determining the full spectrum also from incomplete data.Dedicated to Prof. Dr. J. Meissner on the occasion of his 60th birthday. 相似文献
9.
We propose a new particle‐based method for simulating incompressible Navier‐Stokes flows. It is based on a reinterpretation of the optimal transportation meshfree method within the context of Galerkin discretization. This enables us to introduce the incompressibility constraint into the formulation. Furthermore, we present convergence test and illustrate the usability of the method along several test problems. 相似文献
10.
Unsteady drag on a sphere by shock wave loading 总被引:2,自引:0,他引:2
The dynamic drag coefficient of a sphere by shock wave loading is investigated numerically and experimentally. The diameter of the sphere is varied from 8
m to 80 mm in numerical simulation. The axisymmetric Navier-Stokes equations are solved on a fine grid, and the grid convergence of the drag coefficient is achieved. The numerical result is validated by comparing the experimental data of a 80 mm sphere, measured by the accelerometer in a vertical shock tube. It is found that the sphere experiences in the early interaction one order higher drag than in the steady state. A transient negative drag, mainly resulting from the focusing of shock wave on the rear side of the sphere, is observed only for high Reynolds number flows, and the drag becomes positive because of increased skin friction for low Reynolds number flows.Received: 10 March 2004, Accepted: 24 May 2004, Published online: 20 August 2004[/PUBLISHED]M. Sun: Send offprints requests to 相似文献
11.
纳米颗粒多相流研究是目前多相流研究中新的研究方向及重点发展领域. 为探索纳米尺度多相流相间作用机理及内部存在机制,采用理论分析及数值计算手段,对一般动力学方程的封闭处理、颗粒碰撞率宏观模型的有效构建、颗粒凝并系统动力学演变特性的机理分析、非稀相问题碰撞率的求取、双变量问题求解方法的建立以及一些实际应用进行了系统研究,提出了新的针对纳米尺度颗粒动力学演变的一般动力学方程求解方法,并将其应用于实际工业过程问题的研究. 该文对上述研究工作进行了综述. 相似文献
12.
Guibo Li Yongsheng Lian Yisen Guo Matthew Jemison Mark Sussman Trevor Helms Marco Arienti 《国际流体数值方法杂志》2015,79(9):456-490
A moment‐of‐fluid method is presented for computing solutions to incompressible multiphase flows in which the number of materials can be greater than two. In this work, the multimaterial moment‐of‐fluid interface representation technique is applied to simulating surface tension effects at points where three materials meet. The advection terms are solved using a directionally split cell integrated semi‐Lagrangian algorithm, and the projection method is used to evaluate the pressure gradient force term. The underlying computational grid is a dynamic block‐structured adaptive grid. The new method is applied to multiphase problems illustrating contact‐line dynamics, triple junctions, and encapsulation in order to demonstrate its capabilities. Examples are given in two‐dimensional, three‐dimensional axisymmetric (R–Z), and three‐dimensional (X–Y–Z) coordinate systems. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
13.
The results of an investigation of the dynamics of hard particles and liquid drops in the flow behind a transmitted shock wave are presented. From the equation of motion of a particle in the shock wave, relations for the displacement, velocity and acceleration as functions of time and certain velocity-relaxation parameters taking into account the properties of the gas and the aerodynamic drag of the particles are obtained for unsteady flow around the particles at an acceleration of 103–104 m/s2. It is shown that the velocity-relaxation parameters are universal. Approaches to finding the aerodynamic drag of freely-accelerating bodies from the dynamics of their acceleration after being suddenly exposed to the flow are considered. It is established that under these conditions the drop dynamics observed can be well described in terms of the same velocity-relaxation parameters with account for linear growth of the transverse drop size. All the kinematic functions obtained are confirmed experimentally. 相似文献
14.
Zhou Lixing 《Acta Mechanica Sinica》2002,18(2):97-113
The recent developments and advances of studies on multiphase and reacting flows, including gas-solid, gas-liquid, liquid-solid and reacting flows, in China are reviewed. Special emphasis is laid on the fundamental studies and numerical models. Some important experimental results are also reported. But measurement techniques are not covered. 相似文献
15.
This is a first attempt to develop the Meshless Local Petrov–Galerkin method with Rankine source solution (MLPG_R method) to simulate multiphase flows. In this paper, we do not only further develop the MLPG_R method to model two‐phase flows but also propose two new techniques to tackle the associated challenges. The first technique is to form an equation for pressure on the explicitly identified interface between different phases by considering the continuity of the pressure and the discontinuity of the pressure gradient (i.e. the ratio of pressure gradient to fluid density), the latter reflecting the fact that the normal velocity is continuous across the interface. The second technique is about solving the algebraic equation for pressure, which gives reasonable solution not only for the cases with low density ratio but also for the cases with very high density ratio, such as more than 1000. The numerical tests show that the results of the newly developed two‐phase MLPG_R method agree well with analytical solutions and experimental data in the cases studied. The numerical results also demonstrate that the newly developed method has a second‐order convergent rate in the cases for sloshing motion with small amplitudes. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
16.
In this note, we show the link between the classical continuous surface stress and continuous surface force approaches together with special finite element method techniques toward a fully implicit level set method. Based on a modified surface stress formulation, neither normals nor curvature has to be explicitly calculated. The method is space‐dimension independent. Prototypical numerical tests of benchmarking character for a rising 2D bubble are provided for validating the accuracy of this new approach. We show additionally that the explicit redistancing can be avoided using a nonlinear PDE so that a fully implicit and even monolithic formulation of the corresponding multiphase problem gets feasible. 相似文献
17.
Giovanni Mascali 《Continuum Mechanics and Thermodynamics》2002,14(6):549-561
Recently [1], a procedure has been proposed in order to close the set of the moment equations of relativistic radiative fluid
dynamics. In particular explicit expressions for the moments of the bremsstrahlung and Thomson scattering source terms have
been given. In this work, as anticipated in [1], we shall treat in a systematic way Comptonization and double Compton scattering
too. Numerical results relative to the Compton cooling of hot electrons are shown.
Received November 14, 2001 / Published online June 4, 2002
RID="a"
ID="a" e-mail: mascali@dmi.unict.it
Communicated by Ingo Müller, Berlin 相似文献
18.
Nanoparticle-laden flows via moment method: A review 总被引:1,自引:0,他引:1
The study of nanoparticle-laden multiphase flow has received much attention due to its occurrence in a wide range of industrial and natural phenomena. Many of these flows are multi-dimensional multi-species systems involving strong mass, momentum and energy transfer between carrying phase and dispersed particle phase. The purpose of the present paper is to survey some advances on our researches in this field over the last 5 years. The research includes the closure for particle general dynamic equation; the fundamental interaction between particle dynamics and flow coherent structures; theoretical analysis on nanoparticle collision rate; and the application of theoretical works in some specific problems. 相似文献
19.
Some issues of He–Chen–Zhang lattice Boltzmann equation (LBE) method (referred as HCZ model) (J. Comput. Physics 1999; 152 :642–663) for immiscible multiphase flows with large density ratio are assessed in this paper. An extended HCZ model with a filter technique and mass correction procedure is proposed based on HCZ's LBE multiphase model. The original HCZ model is capable of maintaining a thin interface but is prone to generating unphysical oscillations in surface tension and index function at moderate values of density ratio. With a filtering technique, the monotonic variation of the index function across the interface is maintained with larger density ratio. Kim's surface tension formulation for diffuse–interface method (J. Comput. Physics 2005; 204 :784–804) is then used to remove unphysical oscillation in the surface tension. Furthermore, as the density ratio increases, the effect of velocity divergence term neglected in the original HCZ model causes significant unphysical mass sources near the interface. By keeping the velocity divergence term, the unphysical mass sources near the interface can be removed with large density ratio. The long‐time accumulation of the modeling and/or numerical errors in the HCZ model also results in the error of mass conservation of each dispersed phase. A mass correction procedure is devised to improve the performance of the method in this regard. For flows over a stationary and a rising bubble, and capillary waves with density ratio up to 100, the present approach yields solutions with interface thickness of about five to six lattices and no long‐time diffusion, significantly advancing the performance of the LBE method for multiphase flow simulations. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
20.
Numerical simulations and experimental research are both carried out to investigate the controlled effect of spanwise oscillating Lorentz force on a turbulent channel flow. The variations of the streaks and the skin friction drag are obtained through the PIV system and the drag measurement system, respectively. The flow field in the near-wall region is shown through direct numerical simulations utilizing spectral method. The experimental results are consistent with the numerical simulation results qualitatively, and both the results indicate that the streaks are tilted into the spanwise direction and the drag reduction utilizing spanwise oscillating Lorentz forces can be realized. The numerical simulation results reveal more detail of the drag reduction mechanism which can be explained, since the spanwise vorticity generated from the interaction between the induced Stokes layer and intrinsic turbulent flow in the near-wall region can make the longitudinal vortices tilt and oscillate, and leads to turbulence suppression and drag reduction. 相似文献