首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The low-temperature (5 to 310 K) heat capacity of cesium fluoroxysulfate, CsSO4F, has been measured by adiabatic calorimetry. At T = 298.15 K, the heat capacity Cpo(T) and standard entropy So(T) are (163.46±0.82) and (201.89±1.01) J · K?1 · mol?1, respectively. Based on an earlier measurement of the standard enthalpy of formation ΔHfo the Gibbs energy of formation ΔGfo(CsSO4F, c, 298.15 K) is calculated to be ?(877.6±1.6) kJ · mol?1. For the half-reaction: SO4F?(aq)+2H+(aq)+2e? = HSO4?(aq)+HF(aq), the standard electrode potential E at 298.15 K, is (2.47±0.01) V.  相似文献   

2.
Calorimetric measurements of the enthalpy of reaction of WO3(c) with excess OH?(aq) have been made at 85°C. Similar measurements have been made with MoO3(c) at both 85 and 25°C, to permit estimation of ΔH°=?13.4 kcal mol?1 for the reaction WO3(c)+2OH?(aq)=WO2?4(aq)+H2O(liq) at 25°C. Combination of this ΔH° with ΔH°f for WO3(c) leads to ΔH°f=?256.5 kcal mol?1 for WO2?4(aq). We also obtain ΔH°f=?269.5 kcal mol?1 for H2WO4(c). Both of these values are discussed in relation to several earlier investigations.  相似文献   

3.
Base hydrolysis reactions of [Cr(tmpa)(NCSe)]2O2+, [Cr(tmpa)(N3)]2O2+, [Cr2(tmpa)2(μ−O)(μ−PhPO4)]4+ and [Cr2(tmpa)2(μ−O)(μ−CO3)]2+ follow the pseudo‐first‐order relationship (excess OH): kobsd=ko+kbQp[OH]/(1+Qp[OH]). For the CO32− complex, kb(60°C)=(1.50±0.03)×10−2 s−1; ΔH‡=61±2 kJ/mol, ΔS‡=−99±7 J/mol K; Qp(60°C)=(3.8±0.3)×101 M−1; ΔH°=67±2 kJ/mol, ΔS°=230±7 J/mol K (I=1.0 M). An isokinetic relationship among kOH(=kbQp) activation parameters for five (tmpa)CrOCr(tmpa) complexes shows that all follow essentially the same pathway. Activated complex formation is thought to require nucleophilic attack of coordinated OH at the chromium‐leaving group bond in the kb step, accompanied by reattachment of a tmpa pyridyl arm displaced by OH in the Qp preequilibrium. Abstraction of both thiocyanate ligands was observed upon mixing [Cr(tmpa)(NCS)]2O2+ with [Pd(CH3CN)4]2+ in CH3CN solution. The proposed mechanism requires rapid complexation of both reactant thiocyanate ligands by Pd(II) (Kp(25°C)=(4.5±0.2)×108 M−2; ΔH°=−32±6 kJ/mol, ΔS°=59±19 J/mol K) prior to rate‐limiting Cr NCS bond‐breaking (k2(25°C)=(1.17±0.02)×10−3 s−1; ΔH‡=98±2 kJ/mol, ΔS‡=27±5 J/mol K). Pd(II)‐assisted NCS abstraction is not driven by weakening of the Cr( )NCS bond through ligation of the sulfur atom to palladium, but rather by a favorable ΔS‡ resulting from the release of Pd(NCS)+ fragments and weak solvation of the activated complex in CH3CN solution. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 351–356, 1999  相似文献   

4.
5.
Isopiestic vapor-pressure measurements were made for Li2SO4(aq) from 0.1069 to 2.8190 mol?kg?1 at 298.15 K, and from 0.1148 to 2.7969 mol?kg?1 at 323.15 K, with NaCl(aq) as the reference standard. Published thermodynamic data for this system were reviewed, recalculated for consistency, and critically assessed. The present results and the more reliable published results were used to evaluate the parameters of an extended version of Pitzer’s ion-interaction model with an ionic-strength dependent third-virial coefficient, as well as those of the standard Pitzer model, for the osmotic and activity coefficients at both temperatures. Published enthalpies of dilution at 298.15 K were also analyzed to yield the parameters of the ion-interaction models for the relative apparent molar enthalpies of dilution. The resulting models at 298.15 K are valid to the saturated solution molality of the thermodynamically stable phase Li2SO4?H2O(cr). Solubilities of Li2SO4?H2O(cr) at 298.15 K were assessed and the selected value of m(sat.)=3.13±0.04 mol?kg?1 was used to evaluate the thermodynamic solubility product K s(Li2SO4?H2O, cr, 298.15 K) = (2.62±0.19) and a CODATA-compatible standard molar Gibbs energy of formation Δf G m o (Li2SO4?H2O, cr, 298.15 K) = ?(1564.6±0.5) kJ?mol?1.  相似文献   

6.
A thermochemical study of wulfenite, i.e., natural lead molybdate PbMoO4 (Kyzyl-Espe field deposit, Central Kazakhstan), is performed on a Setaram high-temperature heat-flux Tian-Calvet microcalorimeter (France). Enthalpies of the formation of wulfenite from oxides Δf H ox o (298.15 K) = ?88.5 ± 4.3 kJ/mol and simple substances Δf H°(298.15 K) = ?1051.2 ± 4.3 kJ/mol were determined by means of melt calorimetry. The Δf G°(298.15 K) of wulfenite corresponding to ?949.1 ± 4.3 kJ/mol was calculated using data obtained earlier for S°(298.15 K) = 161.5 ± 0.27 J/(K mol).  相似文献   

7.
The kinetics and equilibrium of the gas-phase reaction of CH3CF2Br with I2 were studied spectrophotometrically from 581 to 662°K and determined to be consistent with the following mechanism: A least squares analysis of the kinetic data taken in the initial stages of reaction resulted in log k1 (M?1 · sec?1) = (11.0 ± 0.3) - (27.7 ± 0.8)/θ where θ = 2.303 RT kcal/mol. The error represents one standard deviation. The equilibrium data were subjected to a “third-law” analysis using entropies and heat capacities estimated from group additivity to derive ΔHr° (623°K) = 10.3 ± 0.2 kcal/mol and ΔHrr (298°K) = 10.2 ± 0.2 kcal/mol. The enthalpy change at 298°K was combined with relevant bond dissociation energies to yield DH°(CH3CF2 - Br) = 68.6 ± 1 kcal/mol which is in excellent agreement with the kinetic data assuming that E2 = 0 ± 1 kcal/mol, namely; DH°(CH3CF2 - Br) = 68.6 ± 1.3 kcal/mol. These data also lead to ΔHf°(CH3CF2Br, g, 298°K) = -119.7 ± 1.5 kcal/mol.  相似文献   

8.
Complexation of divalent cations (Mg2+, Co2+, Ni2+, Cu2+, Cd2+) by selenate ligand was studied by ACE (UV indirect detection) in 0.1 mol/L NaNO3 ionic strength solutions at various temperatures (15, 25, 35, 45 and 55°C). For each solution, a unique peak was observed as a result of a fast equilibrium between the free ion and the complex (labile systems). The migration time corresponding to this peak changed as a function of the solution composition, namely the free and complexed metal concentrations, according to the complexation reactions. The results confirmed the formation of a unique 1:1 complex for each cation. The thermodynamic parameters were fitted to the experimental data at 0.1 mol/L ionic strength: (25°C) = ?(6.5 ± 0.3), ?(7.5 ± 0.3), ?(7.7 ± 0.3), ?(7.7 ± 0.3), and –(8.1 ± 0.3) kJ/mol and = 2.5 ± 0.2, 4.7 ± 0.4, 4.5 ± 0.6, 8.4 ± 1.1, and 7.2 ± 0.6 kJ/mol for M2+ = Mg2+, Co2+, Ni2+, Cu2+, and Cd2+, respectively. Complexes with alkaline earth and transition metal cations could be distinguished by their relative stabilities. The effect of the ionic medium was treated using the specific ion interaction theory and the thermodynamic parameters at infinite dilution were compared to previously published data on metal–selenate, metal–sulfate, and metal–chromate complexes.  相似文献   

9.
The apparent molar heat capacities Cp, φ  and apparent molar volumes Vφ  of Y2(SO4)3(aq), La2(SO4)3(aq), Pr2(SO4)3(aq), Nd2(SO4)3(aq), Eu2(SO4)3(aq), Dy2(SO4)3(aq), Ho2(SO4)3(aq), and Lu2(SO4)3(aq) were measured at T =  298.15 K and p =  0.1 MPa with a Sodev (Picker) flow microcalorimeter and a Sodev vibrating-tube densimeter, respectively. These measurements extend from lower molalities of m =  (0.005 to 0.018) mol ·kg  1to m =  (0.025 to 0.434) mol ·kg  1, where the upper molality limits are slightly below those of the saturated solutions. There are no previously published apparent molar heat capacities for these systems, and only limited apparent molar volume information. Considerable amounts of the R SO4 + (aq) and R(SO4)2  (aq) complexes are present, where R denotes a rare-earth, which complicates the interpretation of these thermodynamic quantities. Values of the ionic molar heat capacities and ionic molar volumes of these complexes at infinite dilution are derived from the experimental information, but the calculations are necessarily quite approximate because of the need to estimate ionic activity coefficients and other thermodynamic quantities. Nevertheless, the derived standard ionic molar properties for the various R SO4 + (aq) and R(SO4)2  (aq) complexes are probably realistic approximations to the actual values. Comparisons indicate that Vφ  {RSO4 + , aq, 298.15K}  =   (6  ±  4)cm3· mol  1and Vφ  {R(SO4)2  , aq, 298.15K}  =  (35  ±  3)cm3· mol  1, with no significant variation with rare-earth. In contrast, values of Cp, φ  { RSO4 + , aq, 298.15K } generally increase with the atomic number of the rare-earth, whereas Cp, φ  { R(SO4)2  , aq, 298.15K } shows a less regular trend, although its values are always positive and tend to be larger for the heavier than for the light rare earths.  相似文献   

10.
Microcalorimetric measurements at 520–523 K of the heats of thermal decomposition and of iodination of bis-(benzene)molybdenum and of bis-(toluene)tungsten have led to the values (kJ mol?): ΔHof[Mo(η-C6H6)2, c] = (235.3 ± 8) and ΔHof[W(η6-C7H8)2, c] = (242.2 ± 8) for the standard enthalpies of formation at 25°C. The corresponding ΔHof(g) values, using available and estimated enthalpies of sublimation, are (329.9 ± 11) and 352.2 ± 11) respectively, from which the metalligand mean bond-dissociation enthalpies, D(Mo—benzene) = (247.0 ± 6) and D(W—toluene) = (304.0 ± 6) kJ mol?1, are derived.  相似文献   

11.

Ligand substitution of trans-[CoIII(en)2(Me)H2O]2+ was studied for pyrazole, 1,2,4-triazole and N-acetylimidazole as entering nucleophiles. These displace the coordinated H2O molecule trans to the methyl group to form trans-[Co(en)2(Me)azole]. Stability constants at 18°C for the substitution of H2O by pyrazole, 1,2,4-triazole and N-acetylimidazole are 0.7 ± 0.1, 13.8 ± 1.4 and 1.7 ± 0.2 M?1, respectively. Second order rate constants at the same temperature for the reaction of trans-[CoIII(en)2(Me)H2O]2+ with pyrazole, 1,2,4-triazole and N-acetylimidazole are 161 ± 12, 212 ± 11 and 12.9 ± 1.6 M?1 s?1, respectively. Activation parameters (ΔH, ΔS) are 67 ± 6 kJ mol?1, + 27 ± 19 J K?1 mol?1; 59 ± 2 kJ mol?1, + 1 ± 6 J K?1 mol?1 and 72 ± 4 kJ mol?1, + 23 ± 14 J K?1 mol?1 for reactions with pyrazole, 1,2,4-triazole and N-acetylimidazole, respectively. Substitution of coordinated H2O by azoles follows an Id mechanism.  相似文献   

12.
The addition of thioacetic acid to unsaturated alcohols or acids was utilized to obtain mercaptoalkanols which were condensed with suitable carybonyl compounds to prepare 24 methyl-substituted 1,3-oxathianes. The 1H NMR spectra of the 1,3-oxathiane products were recorded at 60, 100 and/or 300 MHz and fully analysed. The results are best explained by a chair form which is completely staggered in the C-4? C-5? C-6 moiety ψ45 or (ψ56=60±1°). 1,3-Oxathianes having syn-axial 2,4- (and/or 2,6-) methyl-methyl interactions exist appreciably, if not exclusively, in twist forms. The vicinal coupling constants lead to the conformational free energies of axial methyl groups at C-4, ΔG°=7.4±0.4 kJ mol?1, and at C-5, ΔG°=3.7±0.3 kJ mol?1, in good agreement with previous estimates. They also show that both r-4,cis-5,trans-6- and r-4,trans-5,trans-6- trimethyl-1,3-oxathianes greatly favour the chiar form where the methyl group at C-4 is axial. The chair-twist energy parameters are reestimated at ΔH°CT 27.0 kJ mol?1, ΔS°CT 11.6J mol?1K?1, and ΔG°CT(298) 23.5 kJ mol?1 for a 2,5-twist form.  相似文献   

13.
Kinetics of the complex formation of chromium(III) with alanine in aqueous medium has been studied at 45, 50, and 55°C, pH 3.3–4.4, and μ = 1 M (KNO3). Under pseudo first-order conditions the observed rate constant (kobs) was found to follow the rate equation: Values of the rate parameters (kan, k, KIP, and K) were calculated. Activation parameters for anation rate constants, ΔH(kan) = 25 ± 1 kJ mol?1, ΔH(k) = 91 ± 3 kJ mol?1, and ΔS(kan) = ?244 ± 3 JK?1 mol?1, ΔS(k) = ?30 ± 10 JK?1 mol?1 are indicative of an (Ia) mechanism for kan and (Id) mechanism for k routes (‥substrate Cr(H2O) is involved in the k route whereas Cr(H2O)5OH2+ is involved in k′ route). Thermodynamic parameters for ion-pair formation constants are found to be ΔH°(KIP) = 12 ± 1 kJ mol?1, ΔH°(K) = ?13 ± 3 kJ mol?1 and ΔS°(KIP) = 47 ± 2 JK?1 mol?1, and ΔS°(K) = 20 ± 9 JK?1 mol?1.  相似文献   

14.
Summary From extraction experiments andg-activity measurements, the extraction constant of the Ba2+(aq)+2A-(aq)+L(nb)?BaL2+(nb)+2A-(nb) equilibrium in the two-phase water-nitrobenzene system (L = p-tert-butylcalix[4]arene-tetrakis (N,N-diethylacetamide); aq = aqueous phase, nb = nitrobenzene phase) was evaluated as logKex(BaL2+,2A-)=6.5±0.1. Furthermore, the stability constant of the p-tert-butylcalix[4]arene-tetrakis (N,N-diethylacetamide)̵barium complex in nitrobenzene saturated with water was calculated for at 25 °C as logbnb(BaL2+)=15.4±0.1.  相似文献   

15.
The enthalpies of reaction 1–3 have been determined
as ΔH(1) = ?176.6 ± 5.4, ΔH(2) = ?107.8 ± 6.0, and ΔH(3) = ?78.9 ± 2.0 kJ mol?1. The bond dissociation energy difference D1(PtCH3) ? D1(PtI) = +6 ± 5 kJ mol?1 is calculated, which indicates that the two bonds have very similar strengths.  相似文献   

16.
The hydrogen reaction in concentrated HCl(aq) solutions is a key reaction for the CuCl(aq)/HCl(aq) electrolytic cell. Here, electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV) were used to obtain new data for the hydrogen reaction on platinum submerged in highly concentrated acidic solutions at 25 °C and 0.1 MPa. LSV and EIS data were collected for Pt in 0.5 mol/L H2SO4(aq), 1 mol/L HCl(aq) and 7.71 mol/L HCl(aq) solutions. It was found that exchange current density (j0) values varied between 1 and 2 mA/cm2. An equivalent circuit model was used to obtain comparable j0 and limiting current density values from EIS data relative to values obtained with LSV data. It was found that as the concentration of acid increased, a noticeable decrease in the performance was observed.  相似文献   

17.
The heat capacities of Na2Tb(MoO4)(PO4) and K2Tb(MoO4)(PO4) were measured by adiabatic calorimetry at low temperatures (6.34–333.74 and 7.20–341.17 K, respectively). Smoothed thermal-capacities values were used to calculate the entropy, enthalpy increments, and reduced Gibbs energy. The respective values at 298.15 K are as follows: for Na2Tb(MoO4)(PO4), C p 0 (298.15 K) = 240.1 ± 0.2 J/(K mol), 0 (298.15 K) = 307.4 ± 0.4 J/(K mol), H 0(298.15 K) ? H 0(0) = 44.95 ± 0.03 kJ/mol, and Φ0(298.15 K) = 156.6 ± 0.5 J/(K mol); and for K2Tb(MoO4)(PO4): C p 0 (298.15 K) = 245.1 ± 0.1 J/(K mol), S 0(298.15 K) = 322.9 ± 0.1 J/(K mol), H 0(298.15 K) ? H 0(0) = 46.58 ± 0.02 kJ/mol, and Φ0(298.15 K) = 166.6 ± 0.2 J/(K mol). The noncooperative magnetic component of the heat capacity was estimated.  相似文献   

18.
From extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Cs+(aq) + I?(aq) + 1(nb) ? Cs+(nb) + I?(nb) taking place in the two–phase water–nitrobenzene system (1 = 1,3-alternate-25,27-bis(1-octyloxy)calix[4]arene-crown-6; aq = aqueous phase, nb = nitrobenzene phase) was evaluated as log K ex (Cs+, I?) = 2.9 ± 0.1. Further, the stability constant of the Cs+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log βnb (Cs+) = 8.8 ± 0.1. Finally, by using quantum–mechanical DFT calculations, the most probable structure of the resulting cationic complex species Cs+ was derived.  相似文献   

19.
The influence of placing thioether linkages trans to a site of nitrito substitution and spontaneous nitrito-tonitro isomerization is reported for the [CoQS(H2O)]3+ cation where QS is 1,11-diamino-3,6,9-trithiaundecane. Preparation and characterization is described for the aqua and nitrito complexes. Rate data for the substitution process is presented at 17.7, 25.0 and 35.0°C. It is consistent with the mechanism first proposed by Basolo and Pearson in which N2O3 is the nitrosation agent. [CoQS(H2O)]3+ is three hundred times more reactive than [Co(NH3)5H2O]3+ under identical conditions. Isomerization is dramatically slower than the conversion of [CoQS(H2O)3+ to [CoQS(ONO)]2+. The isomerization process was studied at 5 wavelengths, 3 temperatures and various conditions of acid and nitrite ion at an ionic strength of 0.11–0.60 M. Studies at 25°C give kisom = 1.21 ± 0.12 × 10?4 sec ?1. Similar determinations at 17.7 and 35.0°C give kisom = 3.84 ± 0.65 × 10?5 sec?1 and 3.59 ± 0.13 × 10?4 sec?1 respectively. The thermodynamic activation parameters ΔH, ΔG, and ΔS obtained from an Eyring plot gives ΔH = 111.3 kJ/mol, ΔS = + 53 J/molK and ΔG = 95.4 kJ/mol. These results are discussed in the context of present knowledge and experience with other cobalt(III) ligand systems.  相似文献   

20.
The reaction between chromium(VI) and L-ascorbic acid has been studied by spectrophotometry in the presence of aqueous citrate buffers in the pH range 5.69–7.21. The reaction is slowed down by an increase of the ionic strength. At constant ionic strength, manganese(II) ion does not exert any appreciable inhibition effect on the reaction rate. The rate law found is where Kp is the equilibrium constant for protonation of chromate ion and kr is the rate constant for the redox reaction between the active forms of the oxidant (hydrogenchromate ion) and the reductant (L-hydrogenascorbate ion). The activation parameters associated with rate constant kr are Ea = 20.4 ± 0.9 kJ mol?1, ΔH = 17.9 ± 0.9 kJ mol?1, and ΔS=?152 ± 3 J K?1 mol?1. The reaction thermodynamic magnitudes associated with equilibrium constant Kp are ΔH0 = 16.5 ± 1.1 kJ mol?1 and ΔS0 = 167 ± 4 J K?1 mol?1. A mechanism in accordance with the experimental data is proposed for the reaction. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号