首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We consider the problem of clique‐coloring, that is coloring the vertices of a given graph such that no maximal clique of size at least 2 is monocolored. Whereas we do not know any odd‐hole‐free graph that is not 3‐clique‐colorable, the existence of a constant C such that any perfect graph is C‐clique‐colorable is an open problem. In this paper we solve this problem for some subclasses of odd‐hole‐free graphs: those that are diamond‐free and those that are bull‐free. We also prove the NP‐completeness of 2‐clique‐coloring K4‐free perfect graphs. © 2006 Wiley Periodicals, Inc. J Graph Theory 53: 233–249, 2006  相似文献   

2.
《Journal of Graph Theory》2018,87(4):460-474
An odd k‐edge‐coloring of a graph G is a (not necessarily proper) edge‐coloring with at most k colors such that each nonempty color class induces a graph in which every vertex is of odd degree. Pyber (1991) showed that every simple graph is odd 4‐edge‐colorable, and Lužar et al. (2015) showed that connected loopless graphs are odd 5‐edge‐colorable, with one particular exception that is odd 6‐edge‐colorable. In this article, we prove that connected loopless graphs are odd 4‐edge‐colorable, with two particular exceptions that are respectively odd 5‐ and odd 6‐edge‐colorable. Moreover, a color class can be reduced to a size at most 2.  相似文献   

3.
An edge‐coloring of a graph G with colors is called an interval t‐coloring if all colors are used, and the colors of edges incident to any vertex of G are distinct and form an interval of integers. In 1991, Erd?s constructed a bipartite graph with 27 vertices and maximum degree 13 that has no interval coloring. Erd?s's counterexample is the smallest (in a sense of maximum degree) known bipartite graph that is not interval colorable. On the other hand, in 1992, Hansen showed that all bipartite graphs with maximum degree at most 3 have an interval coloring. In this article, we give some methods for constructing of interval non‐edge‐colorable bipartite graphs. In particular, by these methods, we construct three bipartite graphs that have no interval coloring, contain 20, 19, 21 vertices and have maximum degree 11, 12, 13, respectively. This partially answers a question that arose in [T.R. Jensen, B. Toft, Graph coloring problems, Wiley Interscience Series in Discrete Mathematics and Optimization, 1995, p. 204]. We also consider similar problems for bipartite multigraphs.  相似文献   

4.
《Journal of Graph Theory》2018,88(1):154-173
We study graphs where each edge that is incident to a vertex of small degree (of degree at most 7 and 9, respectively) belongs to many triangles (at least 4 and 5, respectively) and show that these graphs contain a complete graph (K6 and K7, respectively) as a minor. The second case settles a problem of Nevo. Moreover, if each edge of a graph belongs to six triangles, then the graph contains a K8‐minor or contains K2, 2, 2, 2, 2 as an induced subgraph. We then show applications of these structural properties to stress freeness and coloring of graphs. In particular, motivated by Hadwiger's conjecture, we prove that every K7‐minor free graph is 8‐colorable and every K8‐minor free graph is 10‐colorable.  相似文献   

5.
It is well known that every planar graph G is 2‐colorable in such a way that no 3‐cycle of G is monochromatic. In this paper, we prove that G has a 2‐coloring such that no cycle of length 3 or 4 is monochromatic. The complete graph K5 does not admit such a coloring. On the other hand, we extend the result to K5‐minor‐free graphs. There are planar graphs with the property that each of their 2‐colorings has a monochromatic cycle of length 3, 4, or 5. In this sense, our result is best possible. © 2004 Wiley Periodicals, Inc. J Graph Theory 46: 25–38, 2004  相似文献   

6.
An odd hole in a graph is an induced cycle of odd length at least five. In this article we show that every imperfect K4‐free graph with no odd hole either is one of two basic graphs, or has an even pair or a clique cutset. We use this result to show that every K4‐free graph with no odd hole has circular chromatic number strictly smaller than 4. We also exhibit a sequence {Hn} of such graphs with limn→∞χc(Hn)=4. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 303–322, 2010  相似文献   

7.
Given a “forbidden graph” F and an integer k, an F‐avoiding k‐coloring of a graph G is a k‐coloring of the vertices of G such that no maximal F‐free subgraph of G is monochromatic. The F‐avoiding chromatic number acF(G) is the smallest integer k such that G is F‐avoiding k‐colorable. In this paper, we will give a complete answer to the following question: for which graph F, does there exist a constant C, depending only on F, such that acF(G) ? C for any graph G? For those graphs F with unbounded avoiding chromatic number, upper bounds for acF(G) in terms of various invariants of G are also given. Particularly, we prove that ${{ac}}_{{{F}}}({{G}})\le {{2}}\lceil\sqrt{{{n}}}\rceil+{{1}}Given a “forbidden graph” F and an integer k, an F‐avoiding k‐coloring of a graph G is a k‐coloring of the vertices of G such that no maximal F‐free subgraph of G is monochromatic. The F‐avoiding chromatic number acF(G) is the smallest integer k such that G is F‐avoiding k‐colorable. In this paper, we will give a complete answer to the following question: for which graph F, does there exist a constant C, depending only on F, such that acF(G) ? C for any graph G? For those graphs F with unbounded avoiding chromatic number, upper bounds for acF(G) in terms of various invariants of G are also given. Particularly, we prove that ${{ac}}_{{{F}}}({{G}})\le {{2}}\lceil\sqrt{{{n}}}\rceil+{{1}}$, where n is the order of G and F is not Kk or $\overline{{{K}}_{{{k}}}}$. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 300–310, 2010  相似文献   

8.
The clique graph K(G) of a given graph G is the intersection graph of the collection of maximal cliques of G. Given a family ℱ of graphs, the clique‐inverse graphs of ℱ are the graphs whose clique graphs belong to ℱ. In this work, we describe characterizations for clique‐inverse graphs of K3‐free and K4‐free graphs. The characterizations are formulated in terms of forbidden induced subgraphs. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 257–272, 2000  相似文献   

9.
A graph G is (k,0)‐colorable if its vertices can be partitioned into subsets V1 and V2 such that in G[V1] every vertex has degree at most k, while G[V2] is edgeless. For every integer k?0, we prove that every graph with the maximum average degree smaller than (3k+4)/(k+2) is (k,0)‐colorable. In particular, it follows that every planar graph with girth at least 7 is (8, 0)‐colorable. On the other hand, we construct planar graphs with girth 6 that are not (k,0)‐colorable for arbitrarily large k. © 2009 Wiley Periodicals, Inc. J Graph Theory 65:83–93, 2010  相似文献   

10.
A graph is H‐free if it has no induced subgraph isomorphic to H. Brandstädt, Engelfriet, Le, and Lozin proved that the class of chordal graphs with independence number at most 3 has unbounded clique‐width. Brandstädt, Le, and Mosca erroneously claimed that the gem and co‐gem are the only two 1‐vertex P4‐extensions H for which the class of H‐free chordal graphs has bounded clique‐width. In fact we prove that bull‐free chordal and co‐chair‐free chordal graphs have clique‐width at most 3 and 4, respectively. In particular, we find four new classes of H‐free chordal graphs of bounded clique‐width. Our main result, obtained by combining new and known results, provides a classification of all but two stubborn cases, that is, with two potential exceptions we determine all graphs H for which the class of H‐free chordal graphs has bounded clique‐width. We illustrate the usefulness of this classification for classifying other types of graph classes by proving that the class of ‐free graphs has bounded clique‐width via a reduction to K4‐free chordal graphs. Finally, we give a complete classification of the (un)boundedness of clique‐width of H‐free weakly chordal graphs.  相似文献   

11.
12.
It is an old problem in graph theory to test whether a graph contains a chordless cycle of length greater than three (hole) with a specific parity (even, odd). Studying the structure of graphs without odd holes has obvious implications for Berge's strong perfect graph conjecture that states that a graph G is perfect if and only if neither G nor its complement contain an odd hole. Markossian, Gasparian, and Reed have proven that if neither G nor its complement contain an even hole, then G is β‐perfect. In this article, we extend the problem of testing whether G(V, E) contains a hole of a given parity to the case where each edge of G has a label odd or even. A subset of E is odd (resp. even) if it contains an odd (resp. even) number of odd edges. Graphs for which there exists a signing (i.e., a partition of E into odd and even edges) that makes every triangle odd and every hole even are called even‐signable. Graphs that can be signed so that every triangle is odd and every triangle is odd and every hole is odd are called odd‐signable. We derive from a theorem due to Truemper co‐NP characterizations of even‐signable and odd‐signable graphs. A graph is strongly even‐signable if it can be signed so that every cycle of length ≥ 4 with at most one chord is even and every triangle is odd. Clearly a strongly even‐signable graph is even‐signable as well. Graphs that can be signed so that cycles of length four with one chord are even and all other cycles with at most one chord are odd are called strongly odd‐signable. Every strongly odd‐signable graph is odd‐signable. We give co‐NP characterizations for both strongly even‐signable and strongly odd‐signable graphs. A cap is a hole together with a node, which is adjacent to exactly two adjacent nodes on the hole. We derive a decomposition theorem for graphs that contain no cap as induced subgraph (cap‐free graphs). Our theorem is analogous to the decomposition theorem of Burlet and Fonlupt for Meyniel graphs, a well‐studied subclass of cap‐free graphs. If a graph is strongly even‐signable or strongly odd‐signable, then it is cap‐free. In fact, strongly even‐signable graphs are those cap‐free graphs that are even‐signable. From our decomposition theorem, we derive decomposition results for strongly odd‐signable and strongly even‐signable graphs. These results lead to polynomial recognition algorithms for testing whether a graph belongs to one of these classes. © 1999 John Wiley & Sons, Inc. J Graph Theory 30: 289–308, 1999  相似文献   

13.
A star coloring of an undirected graph G is a proper vertex coloring of G (i.e., no two adjacent vertices are assigned the same color) such that no path on four vertices is 2‐colored. The star chromatic number of G is the smallest integer k for which G admits a star coloring with k colors. In this paper, we prove that every subcubic graph is 6‐star‐colorable. Moreover, the upper bound 6 is best possible, based on the example constructed by Fertin, Raspaud, and Reed (J Graph Theory 47(3) (2004), 140–153).  相似文献   

14.
Philip Hall's famous theorem on systems of distinct representatives and its not‐so‐famous improvement by Halmos and Vaughan (1950) can be regarded as statements about the existence of proper list‐colorings or list‐multicolorings of complete graphs. The necessary and sufficient condition for a proper “coloring” in these theorems has a rather natural generalization to a condition we call Hall's condition on a simple graph G, a vertex list assignment to G, and an assignment of nonnegative integers to the vertices of G. Hall's condition turns out to be necessary for the existence of a proper multicoloring of G under these assignments. The Hall‐Halmos‐Vaughan theorem may be stated: when G is a clique, Hall's condition is sufficient for the existence of a proper multicoloring. In this article, we undertake the study of the class HHV of simple graphs G for which Hall's condition is sufficient for the existence of a proper multicoloring. It is shown that HHV is contained in the class ℋ︁0 of graphs in which every block is a clique and each cut‐vertex lies in exactly two blocks. On the other hand, besides cliques, the only connected graphs we know to be in HHV are (i) any two cliques joined at a cut‐vertex, (ii) paths, and (iii) the two connected graphs of order 5 in ℋ︁0, which are neither cliques, paths, nor two cliques stuck together. In case (ii), we address the constructive aspect, the problem of deciding if there is a proper coloring and, if there is, of finding one. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 199–219, 2000  相似文献   

15.
The circular chromatic number of a graph is a well‐studied refinement of the chromatic number. Circular‐perfect graphs form a superclass of perfect graphs defined by means of this more general coloring concept. This article studies claw‐free circular‐perfect graphs. First, we prove that if G is a connected claw‐free circular‐perfect graph with χ(G)>ω(G), then min{α(G), ω(G)}=2. We use this result to design a polynomial time algorithm that computes the circular chromatic number of claw‐free circular‐perfect graphs. A consequence of the strong perfect graph theorem is that minimal imperfect graphs G have min{α(G), ω(G)}=2. In contrast to this result, it is shown in Z. Pan and X. Zhu [European J Combin 29(4) (2008), 1055–1063] that minimal circular‐imperfect graphs G can have arbitrarily large independence number and arbitrarily large clique number. In this article, we prove that claw‐free minimal circular‐imperfect graphs G have min{α(G), ω(G)}≤3. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 163–172, 2010  相似文献   

16.
Let G=(V, E) be a graph where every vertex vV is assigned a list of available colors L(v). We say that G is list colorable for a given list assignment if we can color every vertex using its list such that adjacent vertices get different colors. If L(v)={1, …, k} for all vV then a corresponding list coloring is nothing other than an ordinary k‐coloring of G. Assume that W?V is a subset of V such that G[W] is bipartite and each component of G[W] is precolored with two colors taken from a set of four. The minimum distance between the components of G[W] is denoted by d(W). We will show that if G is K4‐minor‐free and d(W)≥7, then such a precoloring of W can be extended to a 4‐coloring of all of V. This result clarifies a question posed in 10. Moreover, we will show that such a precoloring is extendable to a list coloring of G for outerplanar graphs, provided that |L(v)|=4 for all vV\W and d(W)≥7. In both cases the bound for d(W) is best possible. © 2009 Wiley Periodicals, Inc. J Graph Theory 60: 284‐294, 2009  相似文献   

17.
《Journal of Graph Theory》2018,87(2):188-207
We describe an algorithm for generating all k‐critical ‐free graphs, based on a method of Hoàng et al. (A graph G is k‐critical H‐free if G is H‐free, k‐chromatic, and every H‐free proper subgraph of G is ‐colorable). Using this algorithm, we prove that there are only finitely many 4‐critical ‐free graphs, for both and . We also show that there are only finitely many 4‐critical ‐free graphs. For each of these cases we also give the complete lists of critical graphs and vertex‐critical graphs. These results generalize previous work by Hell and Huang, and yield certifying algorithms for the 3‐colorability problem in the respective classes. In addition, we prove a number of characterizations for 4‐critical H‐free graphs when H is disconnected. Moreover, we prove that for every t, the class of 4‐critical planar ‐free graphs is finite. We also determine all 52 4‐critical planar P7‐free graphs. We also prove that every P11‐free graph of girth at least five is 3‐colorable, and show that this is best possible by determining the smallest 4‐chromatic P12‐free graph of girth at least five. Moreover, we show that every P14‐free graph of girth at least six and every P17‐free graph of girth at least seven is 3‐colorable. This strengthens results of Golovach et al.  相似文献   

18.
A graph G is perfect if for all induced subgraphs H of G, . A graph G is Berge if neither G nor its complement contains an induced odd cycle of length at least five. The Strong Perfect Graph Theorem [9] states that a graph is perfect if and only if it is Berge. The Strong Perfect Graph Theorem was obtained as a consequence of a decomposition theorem for Berge graphs [M. Chudnovsky, Berge trigraphs and their applications, PhD thesis, Princeton University, 2003; M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The strong perfect graph theorem, Ann Math 164 (2006), 51–229.], and one of the decompositions in this decomposition theorem was the “balanced skew‐partition.” A clique‐coloring of a graph G is an assignment of colors to the vertices of G in such a way that no inclusion‐wise maximal clique of G of size at least two is monochromatic, and the clique‐chromatic number of G, denoted by , is the smallest number of colors needed to clique‐color G. There exist graphs of arbitrarily large clique‐chromatic number, but it is not known whether the clique‐chromatic number of perfect graphs is bounded. In this article, we prove that every perfect graph that does not admit a balanced skew‐partition is 2‐clique colorable. The main tool used in the proof is a decomposition theorem for “tame Berge trigraphs” due to Chudnovsky et al. ( http://arxiv.org/abs/1308.6444 ).  相似文献   

19.
A proper vertex coloring of a graph G=(V, E) is acyclic if G contains no bicolored cycle. A graph G is acyclically L‐list colorable if for a given list assignment L={L(v)|vV}, there exists a proper acyclic coloring π of G such that π(v)∈L(v) for all vV. If G is acyclically L‐list colorable for any list assignment with |L(v)|≥k for all vV, then G is acyclically k‐choosable. In this paper we prove that every planar graph G without 4‐cycles is acyclically 6‐choosable. © 2009 Wiley Periodicals, Inc. J Graph Theory 61: 307–323, 2009  相似文献   

20.
The odd‐girth of a graph is the length of a shortest odd circuit. A conjecture by Pavol Hell about circular coloring is solved in this article by showing that there is a function ƒ(ϵ) for each ϵ : 0 < ϵ < 1 such that, if the odd‐girth of a planar graph G is at least ƒ(ϵ), then G is (2 + ϵ)‐colorable. Note that the function ƒ(ϵ) is independent of the graph G and ϵ → 0 if and only if ƒ(ϵ) → ∞. A key lemma, called the folding lemma, is proved that provides a reduction method, which maintains the odd‐girth of planar graphs. This lemma is expected to have applications in related problems. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 109–119, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号