首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of 2,2,4,4‐tetramethyl‐3‐thioxocyclobutanone ( 1 ) with cis‐1‐alkyl‐2,3‐diphenylaziridines 5 in boiling toluene yielded the expected trans‐configured spirocyclic 1,3‐thiazolidines 6 (Scheme 1). Analogously, dimethyl trans‐1‐(4‐methoxyphenyl)aziridine‐2,3‐dicarboxylate (trans‐ 7 ) reacted with 1 and the corresponding dithione 2 , respectively, to give spirocyclic 1,3‐thiazolidine‐2,4‐dicarboxylates 8 (Scheme 2). However, mixtures of cis‐ and trans‐derivatives were obtained in these cases. Unexpectedly, the reaction of 1 with dimethyl 1,3‐diphenylaziridine‐2,2‐dicarboxylate ( 11 ) led to a mixture of the cycloadduct 13 and 5‐(isopropylidene)‐4‐phenyl‐1,3‐thiazolidine‐2,2‐dicarboxylate ( 14 ), a formal cycloadduct of azomethine ylide 12 with dimethylthioketene (Scheme 3). The regioisomeric adduct 16 was obtained from the reaction between 2 and 11 . The structures of 6b , cis‐ 8a , cis‐ 8b, 10 , and 16 have been established by X‐ray crystallography.  相似文献   

2.
The reaction of 9H‐fluorene‐9‐thione ( 1 ) with the cis‐ and trans‐isomers of dimethyl 1‐(4‐methoxyphenyl)aziridine‐2,3‐dicarboxylate (cis‐ and trans‐ 2 , resp.) in xylene at 110° yielded exclusively the spirocyclic cycloadduct with trans‐ and cis‐configurations, respectively (trans‐ and cis‐ 3 , resp.; Scheme 1). Analogously, less‐reactive thioketones, e.g., thiobenzophenone ( 5 ), and cis‐ 2 reacted stereoselectively to give the corresponding trans‐1,3‐thiazolidine‐2,4‐dicarboxylate (e.g., trans‐ 8 ; Scheme 2). On the other hand, the reaction of 5 and trans‐ 2 proceeded in a nonstereoselective course to provide a mixture of trans‐ and cis‐substituted cycloadducts. This result can be explained by an isomerization of the intermediate azomethine ylide. Dimethyl 1,3‐thiazolidine‐2,2‐dicarboxylates 14 and 15 were formed in the thermal reaction of dimethyl aziridine‐2,2‐dicarboxylate 11 with aromatic thioketones (Scheme 3). On treatment of 14 and 15 with Raney‐Ni in refluxing EtOH, a desulfurization and ring‐contraction led to the formation of azetidine‐2,2‐dicarboxylates 17 and 18 , respectively (Scheme 4).  相似文献   

3.
The thermal reaction of 1‐substituted 2,3‐diphenylaziridines 2 with thiobenzophenone ( 6a ) and 9H‐fluorene‐9‐thione ( 6b ) led to the corresponding 1,3‐thiazolidines (Scheme 2). Whereas the cis‐disubstituted aziridines and 6a yielded only trans‐2,4,5,5‐tetraphenyl‐1,3‐thiazolidines of type 7 , the analogous reaction with 6b gave a mixture of trans‐ and cis‐2,4‐diphenyl‐1,3‐thiazolidines 7 and 8 . During chromatography on SiO2, the trans‐configured spiro[9H‐fluorene‐9,5′‐[1,3]thiazolidines] 7c and 7d isomerized to the cis‐isomers. The substituent at N(1) of the aziridine influences the reaction rate significantly, i.e., the more sterically demanding the substituent the slower the reaction. The reaction of cis‐2,3‐diphenylaziridines 2 with dimethyl azodicarboxylate ( 9 ) and dimethyl acetylenedicarboxylate ( 11 ) gave the trans‐cycloadducts 10 and 12 , respectively (Schemes 3 and 4). In the latter case, a partial dehydrogenation led to the corresponding pyrroles. Two stereoisomeric cycloadducts, 15 and 16 , with a trans‐relationship of the Ph groups were obtained from the reaction with dimethyl fumarate ( 14 ; Scheme 5); with dimethyl maleate ( 17 ), the expected cycloadduct 18 together with the 2,3‐dihydropyrrole 19 was obtained (Scheme 6). The structures of the cycloadducts 7b, 8a, 15b , and 16b were established by X‐ray crystallography.  相似文献   

4.
The reactions of thiobenzamide 8 with diazo compounds proceeded via reactive thiocarbonyl ylides as intermediates, which underwent either a 1,5‐dipolar electrocyclization to give the corresponding five membered heterocycles, i.e., 4‐amino‐4,5‐dihydro‐1,3‐thiazole derivatives (i.e., 10a, 10b, 10c , cis‐ 10d , and trans‐ 10d ) or a 1,3‐dipolar electrocyclization to give the corresponding thiiranes as intermediates, which underwent a SNi′‐like ring opening and subsequent 5‐exo‐trig cyclization to yield the isomeric 2‐amino‐2,5‐dihydro‐1,3‐thiazole derivatives (i.e., 11a, 11b, 11c , cis‐ 11d , and trans‐ 11d ). In general, isomer 10 was formed in higher yield than isomer 11 . In the case of the reaction of 8 with diazo(phenyl)methane ( 3d ), a mixture of two pairs of diastereoisomers was formed, of which two, namely cis‐ 10d and trans‐ 10d , could be isolated as pure compounds. The isomers cis‐ 11d and trans‐ 11d remained as a mixture. In the reactions of the thioxohydrazone 9 with diazo compounds 3b and 3d , the main products were the alkenes 18 and 23 , respectively. Their formation was rationalized by a 1,3‐dipolar electrocyclization of the corresponding thiocarbonyl ylide and subsequent desulfurization of the intermediate thiiran. As minor products, 2,5‐dihydro‐1,3‐thiazol‐5‐amines 21 and 24 were obtained, which have been formed by 1,5‐dipolar electrocyclization of the thiocarbonyl ylide, followed by a 1,3‐shift of the dimethylamino group.  相似文献   

5.
The reactions of 3‐phenyl‐1‐azabicyclo[1.1.0]butane ( 4 ) with dimethyl dicyanofumarate ((E)‐ 8 ) and dimethyl dicyanomaleate ((Z)‐ 8 ) lead to the same mixture of cis‐ and trans‐4‐phenyl‐1‐azabicyclo[2.1.1]hexane 2,3‐dicarboxylates (cis‐ 11 and trans‐ 11 , resp.; Scheme 3). This result of a formal cycloaddition to the central C? N bond of 4 is interpreted by a stepwise reaction mechanism via a relatively stable zwitterionic intermediate 10 , which could be intercepted by morpholine to give a 1 : 1 : 1 adduct 12 , which undergoes a spontaneous elimination of HCN to yield the fumarate 13 (Scheme 4).  相似文献   

6.
The reaction of the methyl (dialkoxyphosphinyl)‐dithioformates (= methyl dialkoxyphosphinecarbodithioate 1‐oxides) 10 with CH2N2 at − 65° in THF yielded cycloadducts which eliminated N2 between − 40 and − 35° to give the corresponding phosphonodithioformate S‐methanides ( =methylenesulfonium (dialkoxyoxidophosphino)(methylthio)methylides) 11 (Scheme 3). These reactive 1,3‐dipoles were intercepted by aromatic thioketones to yield 1,3‐dithiolanes. Whereas the reaction with thiobenzophenone ( 12b ) led to the sterically more congested isomers 15 regioselectively, a mixture of both regioisomers was obtained with 9H‐fluorene‐9‐thione ( 12a ). Trapping of 11 with phosphono‐ and sulfonodithioformates led exclusively to the sterically less hindered 1,3‐dithiolanes 16 and 18 , respectively (Scheme 4). In addition, reactive CC dipolarophiles such as ethenetetracarbonitrile, maleic anhydride, and N‐phenylmaleimide as well as the NN dipolarophile dimethyl diazenedicarboxylate were shown to be efficient interceptors of 11 (Scheme 5).  相似文献   

7.
The smooth reaction of 3‐chloro‐3‐(chlorosulfanyl)‐2,2,4,4‐tetramethylcyclobutanone ( 3 ) with 3,4,5‐trisubstituted 2,3‐dihydro‐1H‐imidazole‐2‐thiones 8 and 2‐thiouracil ( 10 ) in CH2Cl2/Et3N at room temperature yielded the corresponding disulfanes 9 and 11 (Scheme 2), respectively, via a nucleophilic substitution of Cl? of the sulfanyl chloride by the S‐atom of the heterocyclic thione. The analogous reaction of 3‐cyclohexyl‐2,3‐dihydro‐4,5‐diphenyl‐1H‐imidazole‐2‐thione ( 8b ) and 10 with the chlorodisulfanyl derivative 16 led to the corresponding trisulfanes 17 and 18 (Scheme 4), respectively. On the other hand, the reaction of 3 and 4,4‐dimethyl‐2‐phenyl‐1,3‐thiazole‐5(4H)‐thione ( 12 ) in CH2Cl2 gave only 4,4‐dimethyl‐2‐phenyl‐1,3‐thiazol‐5(4H)‐one ( 13 ) and the trithioorthoester derivative 14 , a bis‐disulfane, in low yield (Scheme 3). At ?78°, only bis(1‐chloro‐2,2,4,4‐tetramethyl‐3‐oxocyclobutyl)polysulfanes 15 were formed. Even at ?78°, a 1 : 2 mixture of 12 and 16 in CH2Cl2 reacted to give 13 and the symmetrical pentasulfane 19 in good yield (Scheme 5). The structures of 11, 14, 17 , and 18 have been established by X‐ray crystallography.  相似文献   

8.
The SnCl4‐catalyzed reaction of (?)‐thiofenchone (=1,3,3‐trimethylbicyclo[2.2.1]heptane‐2‐thione; 10 ) with (R)‐2‐phenyloxirane ((R)‐ 11 ) in anhydrous CH2Cl2 at ?60° led to two spirocyclic, stereoisomeric 4‐phenyl‐1,3‐oxathiolanes 12 and 13 via a regioselective ring enlargement, in accordance with previously reported reactions of oxiranes with thioketones (Scheme 3). The structure and configuration of the major isomer 12 were determined by X‐ray crystallography. On the other hand, the reaction of 1‐methylpyrrolidine‐2‐thione ( 14a ) with (R)‐ 11 yielded stereoselectively (S)‐2‐phenylthiirane ((S)‐ 15 ) in 56% yield and 87–93% ee, together with 1‐methylpyrrolidin‐2‐one ( 14b ). This transformation occurs via an SN2‐type attack of the S‐atom at C(2) of the aryl‐substituted oxirane and, therefore, with inversion of the configuration (Scheme 4). The analogous reaction of 14a with (R)‐2‐{[(triphenylmethyl)oxy]methyl}oxirane ((R)‐ 16b ) led to the corresponding (R)‐configured thiirane (R)‐ 17b (Scheme 5); its structure and configuration were also determined by X‐ray crystallography. A mechanism via initial ring opening by attack at C(3) of the alkyl‐substituted oxirane, with retention of the configuration, and subsequent decomposition of the formed 1,3‐oxathiolane with inversion of the configuration is proposed (Scheme 5).  相似文献   

9.
To complete our panorama in structure–activity relationships (SARs) of sandalwood‐like alcohols derived from analogues of α‐campholenal (= (1R)‐2,2,3‐trimethylcyclopent‐3‐ene‐1‐acetaldehyde), we isomerized the epoxy‐isopropyl‐apopinene (?)‐ 2d to the corresponding unreported α‐campholenal analogue (+)‐ 4d (Scheme 1). Derived from the known 3‐demethyl‐α‐campholenal (+)‐ 4a , we prepared the saturated analogue (+)‐ 5a by hydrogenation, while the heterocyclic aldehyde (+)‐ 5b was obtained via a Bayer‐Villiger reaction from the known methyl ketone (+)‐ 6 . Oxidative hydroboration of the known α‐campholenal acetal (?)‐ 8b allowed, after subsequent oxidation of alcohol (+)‐ 9b to ketone (+)‐ 10 , and appropriate alkyl Grignard reaction, access to the 3,4‐disubstituted analogues (+)‐ 4f,g following dehydration and deprotection. (Scheme 2). Epoxidation of either (+)‐ 4b or its methyl ketone (+)‐ 4h , afforded stereoselectively the trans‐epoxy derivatives 11a,b , while the minor cis‐stereoisomer (+)‐ 12a was isolated by chromatography (trans/cis of the epoxy moiety relative to the C2 or C3 side chain). Alternatively, the corresponding trans‐epoxy alcohol or acetate 13a,b was obtained either by reduction/esterification from trans‐epoxy aldehyde (+)‐ 11a or by stereoselective epoxidation of the α‐campholenol (+)‐ 15a or of its acetate (?)‐ 15b , respectively. Their cis‐analogues were prepared starting from (+)‐ 12a . Either (+)‐ 4h or (?)‐ 11b , was submitted to a Bayer‐Villiger oxidation to afford acetate (?)‐ 16a . Since isomerizations of (?)‐ 16 lead preferentially to β‐campholene isomers, we followed a known procedure for the isomerization of (?)‐epoxyverbenone (?)‐ 2e to the norcampholenal analogue (+)‐ 19a . Reduction and subsequent protection afforded the silyl ether (?)‐ 19c , which was stereoselectively hydroborated under oxidative condition to afford the secondary alcohol (+)‐ 20c . Further oxidation and epimerization furnished the trans‐ketone (?)‐ 17a , a known intermediate of either (+)‐β‐necrodol (= (+)‐(1S,3S)‐2,2,3‐trimethyl‐4‐methylenecyclopentanemethanol; 17c ) or (+)‐(Z)‐lancifolol (= (1S,3R,4Z)‐2,2,3‐trimethyl‐4‐(4‐methylpent‐3‐enylidene)cyclopentanemethanol). Finally, hydrogenation of (+)‐ 4b gave the saturated cis‐aldehyde (+)‐ 21 , readily reduced to its corresponding alcohol (+)‐ 22a . Similarly, hydrogenation of β‐campholenol (= 2,3,3‐trimethylcyclopent‐1‐ene‐1‐ethanol) gave access via the cis‐alcohol rac‐ 23a , to the cis‐aldehyde rac‐ 24 .  相似文献   

10.
The (−)‐ and (+)‐β‐irones ((−)‐ and (+)‐ 2 , resp.), contaminated with ca. 7 – 9% of the (+)‐ and (−)‐transα‐isomer, respectively, were obtained from racemic α‐irone via the 2,6‐trans‐epoxide (±)‐ 4 (Scheme 2). Relevant steps in the sequence were the LiAlH4 reduction of the latter, to provide the diastereoisomeric‐4,5‐dihydro‐5‐hydroxy‐transα‐irols (±)‐ 6 and (±)‐ 7 , resolved into the enantiomers by lipase‐PS‐mediated acetylation with vinyl acetate. The enantiomerically pure allylic acetate esters (+)‐ and (−)‐ 8 and (+)‐ and (−)‐ 9 , upon treatment with POCl3/pyridine, were converted to the β‐irol acetate derivatives (+)‐ and (−)‐ 10 , and (+)‐ and (−)‐ 11 , respectively, eventually providing the desired ketones (+)‐ and (−)‐ 2 by base hydrolysis and MnO2 oxidation. The 2,6‐cis‐epoxide (±)‐ 5 provided the 4,5‐dihydro‐4‐hydroxy‐cisα‐irols (±)‐ 13 and (±)‐ 14 in a 3 : 1 mixture with the isomeric 5‐hydroxy derivatives (±)‐ 15 and (±)‐ 16 on hydride treatment (Scheme 1). The POCl3/pyridine treatment of the enantiomerically pure allylic acetate esters, obtained by enzymic resolution of (±)‐ 13 and (±)‐ 14 , provided enantiomerically pure cisα‐irol acetate esters, from which ketones (+)‐ and (−)‐ 22 were prepared (Scheme 4). The same materials were obtained from the (9S) alcohols (+)‐ 13 and (−)‐ 14 , treated first with MnO2, then with POCl3/pyridine (Scheme 4). Conversely, the dehydration with POCl3/pyridine of the enantiomerically pure 2,6‐cis‐5‐hydroxy derivatives obtained from (±)‐ 15 and (±)‐ 16 gave rise to a mixture in which the γ‐irol acetates 25a and 25b and 26a and 26b prevailed over the α‐ and β‐isomers (Scheme 5). The (+)‐ and (−)‐cisγ‐irones ((+)‐ and (−)‐ 3 , resp.) were obtained from the latter mixture by a sequence involving as the key step the photochemical isomerization of the α‐double bond to the γ‐double bond. External panel olfactory evaluation assigned to (+)‐β‐irone ((+)‐ 2 ) and to (−)‐cisγ‐irone ((−)‐ 3 ) the strongest character and the possibility to be used as dry‐down note.  相似文献   

11.
In the context of our aim of discovering new antitumor drugs among synthetic γ‐lactone‐ and γ‐lactam‐fused 1‐methylquinolin‐4(1H)‐ones, we developed a rapid access to 5‐methyl‐1,3‐dioxolo[4,5‐g]furo[3,4‐b]quinoline‐8,9(5H,6H)‐dione ( 9 ) exploiting the γ‐lactone‐fused chloroquinoline 10 previously synthesized in our laboratory (Scheme 1). We also elaborated efficient synthetic methods allowing for a rapid access to two nonclassical bioisosteres of 9 , i.e., a deoxy and a carba analogue. The deoxy analogue 11 was prepared in two steps from the γ‐lactone‐fused quinoline 13 which was also the synthetic precursor of 10 (Scheme 1). The carba analogue 6,9‐dihydro‐5‐methyl‐9‐methylene‐1,3‐dioxolo[4,5‐g]furo[3,4‐b]quinolin‐8(5H)‐one ( 12 ) was easily prepared by HCl elimination from the 9‐(chloromethyl)dioxolofuroquinoline 15 , which was obtained via a three‐component one‐pot reaction from N‐methyl‐3,4‐(methylenedioxy)aniline (=N‐methyl‐1,3‐benzodioxol‐5‐amine; 16 ), commercially available chloroacetaldehyde, and tetronic acid ( 17 ) (Scheme 2).  相似文献   

12.
The switch from a concerted to a two‐step pathway of 1,3‐dipolar cycloadditions was recently established for the reactions of sterically hindered ‘thiocarbonyl ylides' with acceptor ethylenes. This mechanism via zwitterionic intermediates is studied here for 1,3‐dipoles 5A and 5B , which are derived from 2,2,5,5‐tetramethylcyclopentanethione and 1,1,3,3‐tetramethylindan‐2‐thione, respectively, and contain a highly screened reaction center. In the reactions of 8A and 8B (the precursors of 5A and 5B ) with dimethyl 2,3‐dicyanofumarate ( 15 ) and 2,3‐dicyanomaleate ( 16 ), virtually identical ratios of cis‐ and trans‐thiolanes were observed ( 17 / 18 93 : 7 for 5a and 94 : 6 for 5B ). Thus, full equilibration of rotameric zwitterions precedes cyclization; an anteceding disturbing isomerization 15 ⇌ 16 had to be circumvented. The cis,trans assignment of the cycloadducts rests on three X‐ray analyses. The kinetically favored cis‐thiolanes 17 isomerize at >80° to 18 (trans), and irreversible cleavage leads to thione 7 and trans,cis isomeric dimethyl 1,2‐dicyanocyclopropane‐1,2‐dicarboxylates ( 27 and 28 , resp.). Furthermore, the zwitterionic intermediates equilibrate with the cyclic seven‐membered ketene imine 21 , which was intercepted under conditions where the solvent contained 2 vol‐% of H2O or MeOH. Lactams 22 were obtained with H2O in high yields, and the primary products of capturing by MeOH were the cyclic ketene O,N‐acetals 23 , which subsequently tautomerized to the lactim methyl ethers 24 . When 5B was reacted with ethenetetracarbonitrile in CDCl3/MeOH (98 : 2 vol‐%), the analogous cyclic ketene imine 13B was trapped to the extent of 93%.  相似文献   

13.
The cycloadditions of methyl diazoacetate to 2,3‐bis(trifluoromethyl)fumaronitrile ((E)‐ BTE ) and 2,3‐bis(trifluoromethyl)maleonitrile ((Z)‐ BTE ) furnish the 4,5‐dihydro‐1H‐pyrazoles 13 . The retention of dipolarophile configuration proceeds for (E)‐ BTE with > 99.93% and for (Z)‐ BTE with > 99.8% (CDCl3, 25°), suggesting concertedness. Base catalysis (1,4‐diazabicyclo[2.2.2]octane (DABCO), proton sponge) converts the cycloadducts, trans‐ 13 and cis‐ 13 , to a 94 : 6 equilibrium mixture (CDCl3, r.t.); the first step is N‐deprotonation, since reaction with methyl fluorosulfonate affords the 4,5‐dihydro‐1‐methyl‐1H‐pyrazoles. Competing with the cis/trans isomerization of 13 is the formation of a bis(dehydrofluoro) dimer (two diastereoisomers), the structure of which was elucidated by IR, 19F‐NMR, and 13C‐NMR spectroscopy. The reaction slows when DABCO is bound by HF, but F? as base keeps the conversion to 22 going and binds HF. The diazo group in 22 suggests a common intermediate for cis/trans isomerization of 13 and conversion to 22 : reversible ring opening of N‐deprotonated 13 provides 18 , a derivative of methyl diazoacetate with a carbanionic substituent. Mechanistic comparison with the reaction of diazomethane and dimethyl 2,3‐dicyanofumarate, a related tetra‐acceptor‐ethylene, brings to light unanticipated divergencies.  相似文献   

14.
Dimethyl heptalene‐4,5‐dicarboxylates
  • 1 The locants of heptalene itself are maintained throughout the whole work. See footnote 4 in [1] for reasoning.
  • undergo preferentially a Michael addition reaction at C(3) with α‐lithiated alkyl phenyl sulfones at temperatures below ?50°, leading to corresponding cis‐configured 3,4‐dihydroheptalene‐4,5‐dicarboxylates (cf. Table 1, Schemes 3 and 4). The corresponding heptalenofuran‐1‐one‐type pseudoesters of dimethyl heptalene‐4,5‐dicarboxylates (Scheme 5) react with [(phenylsulfonyl)methyl]lithium almost exclusively at C(1) of the furanone group (Scheme 6). In contrast to this expected behavior, the uptake of 1‐[phenylsulfonyl)ethyl]lithium occurs at C(5) of the heptalenofuran‐1‐ones as long as they carry a Me group at C(11) (Schemes 6 and 7). The 1,4‐ as well as the 1,6‐addition products eliminate, on treatment with MeONa/MeOH in THF, benzenesulfinate, thus leading to 3‐ and 4‐alkylated dimethyl heptalene‐4,5‐dicarboxylates, respectively (Schemes 813). The configuration of the addition reaction of the nucleophiles to the inherently chiral heptalenes is discussed in detail (cf. Schemes 1419) on the basis of a number of X‐ray crystal‐structure determinations as well as by studies of the temperature‐dependence of the 1H‐NMR spectra of the addition products.  相似文献   

    15.
    New tricyclic 1,2,3‐triazolo‐1,2,4‐triazolo‐pyridazine derivatives, bearing a methyl substituent on the 1,2,3‐triazole ring, were prepared as potential biological agents. N‐Methylation of dimethyl 1,2,3‐triazole‐4,5‐dicarboxylate allowed synthesis of the isomeric 1‐methyl‐4,7‐dihydroxy and 2‐methyl‐4,7‐dihydroxy triazolo‐pyridazines 4a and 4b which, by a chlorination reaction, gave the corresponding 1‐methyl‐4‐chloro‐( 6a ), 1‐methyl‐7‐chloro‐ ( 6b ) and 2‐methyl‐4‐chloro‐ ( 9 ) substituted 1,2,3‐triazolo‐pyridazines. The nucle‐ophilic substitution with hydrazine hydrate and the suitable cyclization to form the 1,2,4‐triazole ring, provided the expected tricyclic isomeric derivatives 8a, 8b and 11 respectively. The p‐methoxybenzyl substituent, introduced as a leaving group to obtain either v‐triazolo‐pyridazine or v‐triazolo‐s‐triazolo‐pyri‐dazine derivatives unsubstituted on the 1,2,3‐triazole ring, appeared inadequate. Some compounds underwent binding assays toward the adenosine A1and A2A receptors.  相似文献   

    16.
    During studies of aziridination of α,β‐unsaturated amides with diaziridine, we found that we could prepare both the cis‐ and trans‐aziridinecarboxamides by choosing an appropriately substituted diaziridine. While 3‐monosubstituted diaziridine 2 was suitable for the trans‐selective aziridination, employment of 3,3‐dialkyldiaziridine 1 resulted in the formation of cis‐aziridine carboxamides, irrespective of the geometry of the substrate (Scheme 1 and Tables 1 and 2). To elucidate the unique nonstereospecificity and to expand these aziridinations to asymmetric ones, several optically active diaziridines were newly prepared. Aziridination with an optically active 3‐monosubstituted diaziridine, 3‐cyclohexyl‐1‐[(1R)‐1‐phenylethyl]diaziridine 16 , proceeded smoothly with high trans‐selectivity as well as excellent enantioselectivity (up to 98% ee; see Table 3). On the other hand, highly enantioselective cis‐aziridination was achieved (>99% ee) with optically active 3,3‐dimethyl‐1‐[(1R)‐1‐phenylethyl]diaziridine 15 , though the yield was low (4%). This aziridination was considered to proceed stepwise by way of the enolate intermediate (Scheme 2). Careful inspection of the stereochemistry and its solvent‐dependence suggested that the diastereoselection of the reaction was kinetically controlled: the 1,4‐addition of N‐lithiated diaziridine was a crucial step for determination of the stereochemical course of the aziridination (Figs. 24).  相似文献   

    17.
    The reaction of 2,3‐allenoates and aldehydes in the presence of an alkoxide affords alkyl 4,5‐diaryl‐3‐oxo‐2‐propylpent‐4(E)‐enoates and cis‐3,4‐diaryloxetanes through a formal C?O and C?C metathesis. A mechanism for this reaction has been proposed.  相似文献   

    18.
    2‐Aryl‐4,5,6,7‐tetrahydro‐1,2‐benzisothiazol‐3(2H)‐ones 1a – e were synthesized by cyclocondensation of 2‐(thiocyanato)cyclohexene‐1‐carboxanilides 9 as a convenient new method. Their S‐oxides 10 were prepared by two routes, either by oxidation of 1 or dehydration of rac‐cis‐3‐hydroperoxysultims 11 . Furthermore, compounds 1 have been identified by HPLC? API‐MS‐MS as intermediates in the oxidation process of the salts 6 . The hydroperoxides 12b and rac‐trans‐ 11b have been unambiguously detected by HPLC? MS investigations and in the reaction of rac‐cis‐ 13b with H2O2 to the hydroperoxides rac‐trans‐ 11b and rac‐cis‐ 11b .  相似文献   

    19.
    A series of 7‐fluorinated 7‐deazapurine 2′‐deoxyribonucleosides related to 2′‐deoxyadenosine, 2′‐deoxyxanthosine, and 2′‐deoxyisoguanosine as well as intermediates 4b – 7b, 8, 9b, 10b , and 17b were synthesized. The 7‐fluoro substituent was introduced in 2,6‐dichloro‐7‐deaza‐9H‐purine ( 11a ) with Selectfluor (Scheme 1). Apart from 2,6‐dichloro‐7‐fluoro‐7‐deaza‐9H‐purine ( 11b ), the 7‐chloro compound 11c was formed as by‐product. The mixture 11b / 11c was used for the glycosylation reaction; the separation of the 7‐fluoro from the 7‐chloro compound was performed on the level of the unprotected nucleosides. Other halogen substituents were introduced with N‐halogenosuccinimides ( 11a → 11c – 11e ). Nucleobase‐anion glycosylation afforded the nucleoside intermediates 13a – 13e (Scheme 2). The 7‐fluoro‐ and the 7‐chloro‐7‐deaza‐2′‐deoxyxanthosines, 5b and 5c , respectively, were obtained from the corresponding MeO compounds 17b and 17c , or 18 (Scheme 6). The 2′‐deoxyisoguanosine derivative 4b was prepared from 2‐chloro‐7‐fluoro‐7‐deaza‐2′‐deoxyadenosine 6b via a photochemically induced nucleophilic displacement reaction (Scheme 5). The pKa values of the halogenated nucleosides were determined (Table 3). 13C‐NMR Chemical‐shift dependencies of C(7), C(5), and C(8) were related to the electronegativity of the 7‐halogen substituents (Fig. 3). In aqueous solution, 7‐halogenated 2′‐deoxyribonucleosides show an approximately 70% S population (Fig. 2 and Table 1).  相似文献   

    20.
    The reaction of aryl isoselenocyanates 8 with methyl 3‐amino‐4‐chloro‐1‐ethylpyrrolo[3,2‐c]quinoline‐2‐carboxylate ( 6 ) in boiling pyridine leads to tetracyclic selenaheterocycles of type 9 in high yield (Scheme 3). A reaction mechanism via an intermediate selenoureido derivative A and cyclization via nucleophilic substitution of Cl by Se is proposed (Schemes 3 and 5). The reaction of 6 with 4‐bromophenyl isothiocyanate yields the analogous thiaheterocycle 12 (Scheme 4). The molecular structures of 9c and 12 have been established by X‐ray crystallography.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号