首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Masked thresholds for a 1000-Hz sinusoidal signal were measured as a function of masker level in both forward and simultaneous masking for two types of maskers: a 1000-Hz sinusoid and a narrowband noise, 60-Hz wide, centered at 1000 Hz. In forward masking, the noise masker produced much steeper growth-of-masking functions than the sinusoid. Presenting a contralateral broadband noise "cue" with the forward masker dramatically reduced the slope of masking for the noise masker but did not influence results for the sinusoidal masker. The noise remained the more effective masker. The amount of masking produced by combinations of equally effective narrowband-noise and sinusoidal maskers was compared to that produced by each masker individually with and without the contralateral cue. No additional masking beyond that predicted by energy summation was measured for forward masking. Additional masking beyond energy-sum predictions was measured for analogous conditions in simultaneous masking. Comparisons of results obtained with and without the contralateral cue suggest that signal thresholds in the presence of narrowband-noise forward maskers can reflect nonperipheral auditory processes.  相似文献   

2.
Detection thresholds for a tone in an unfamiliar tonal pattern can be greatly elevated under conditions of masker uncertainty [Neff and Green, Percept. Psychophys. 41, 409-415 (1987); Oh and Lutfi, J. Acoust. Soc. Am. 101, 3148 (1997)]. The present experiment was undertaken to determine whether harmonicity of masker tones can reduce the detrimental effect of masker uncertainty. Inharmonic maskers were comprised of m=2-49 frequency components selected at random on each presentation within 100-10000 Hz, excluding frequencies between 920-1080. Harmonic maskers were comprised of frequency components selected at random within this same range, but constrained to have a fundamental frequency of 200 Hz. For inharmonic maskers the signal was a 1000-Hz tone. For harmonic-maskers the signal was a tone whose frequency was either harmonically (1000 Hz) or inharmonically (1047 Hz) related to the masker. In all conditions the amount of masking was greatest for m = 20-40 components. At this point, harmonic maskers with harmonic signal produced an average of 9-12 dB less masking than inharmonic maskers. Harmonic maskers with inharmonic signal produced an average of 16-20 dB less masking.  相似文献   

3.
Complex tones containing the first ten harmonics at equal amplitude, and with fundamental frequencies of 100, 200, or 400 Hz, served as maskers for brief sinusoidal signals (10-, 20-, or 40-ms duration) presented immediately following the maskers. Threshold was measured as a function of signal frequency, using an adaptive, two-alternative forced-choice procedure. The starting phase of the signal relative to the masker had no significant effect on threshold. The masking patterns showed clear peaks corresponding to the first 3 or 4 harmonics, but no peaks were visible for higher harmonics. It is concluded that the "ripple" in the internal spectra of the maskers amounts to 3 dB or less for harmonics above the fifth.  相似文献   

4.
These experiments examine how comodulation masking release (CMR) varies with masker bandwidth, modulator bandwidth, and signal duration. In experiment 1, thresholds were measured for a 400-ms, 2000-Hz signal masked by continuous noise varying in bandwidth from 50-3200 Hz in 1-oct steps. In one condition, using random noise maskers, thresholds increased with increasing bandwidth up to 400 Hz and then remained approximately constant. In another set of conditions, the masker was multiplied (amplitude modulated) by a low-pass noise (bandwidth varied from 12.5-400 Hz in 1-oct steps). This produced correlated envelope fluctuations across frequency. Thresholds were generally lower than for random noise maskers with the same bandwidth. For maskers less than one critical band wide, the release from masking was largest (about 5 dB) for maskers with low rates of modulation (12.5-Hz-wide low-pass modulator). It is argued that this release from masking is not a "true" CMR but results from a within-channel cue. For broadband maskers (greater than 400 Hz), the release from masking increased with increasing masker bandwidth and decreasing modulator bandwidth, reaching an asymptote of 12 dB for a masker bandwidth of 800 Hz and a modulator bandwidth of 50 Hz. Most of this release from masking can be attributed to a CMR. In experiment 2, the modulator bandwidth was fixed at 12.5 Hz and the signal duration was varied. For masker bandwidths greater than 400 Hz, the CMR decreased from 12 to 5 dB as the signal duration was decreased from 400 to 25 ms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Envelope-induced pitch shifts were measured for exponentially decaying complex tones consisting of two sinusoidal components with frequencies f1 = nf0 + 50 Hz and f2 = (n + 1) f0 + 50 Hz, where n equals 3, 4, or 5 and exponential decay rates were 0, 0.5, 1, and 2 dB/ms. Four subjects adjusted a sinusoidal comparison tone to match the virtual pitch of the (missing) fundamental and the pitches of the lower and upper partials f1 and f2. Pitch shifts for f1 are generally less, and pitch shifts for f2 always greater, than envelope-induced shifts observed in isolated sinusoidal tones of comparable frequency and envelope decay rate. Pitch-shift functions for virtual pitch are similar in magnitude and shape to average pitch-shift functions of the partials, which supports the idea that virtual pitch depends on spectral pitch.  相似文献   

6.
This study examined the time course of cochlear suppression using a tone-burst suppressor to measure decrement of distortion-product otoacoustic emissions (DPOAEs). Seven normal-hearing subjects with ages ranging from 19 to 28 yr participated in the study. Each subject had audiometric thresholds ≤ 15 dB HL [re ANSI (2004) Specifications for Audiometers] for standard octave and inter-octave frequencies from 0.25 to 8 kHz. DPOAEs were elicited by primary tones with f(2)?= 4.0 kHz and f(1)?= 3.333 kHz (f(2)/f(1)?= 1.2). For the f(2), L(2) combination, suppression was measured for three suppressor frequencies: One suppressor below f(2) (3.834 kHz) and two above f(2) (4.166 and 4.282 kHz) at three levels (55, 60, and 65 dB SPL). DPOAE decrement as a function of L(3) for the tone-burst suppressor was similar to decrements obtained with longer duration suppressors. Onset- and setoff- latencies were ≤ 4 ms, in agreement with previous physiological findings in auditory-nerve fiber studies that suggest suppression results from a nearly instantaneous compression of the waveform. Persistence of suppression was absent for the below-frequency suppressor (f(3)?= 3.834 kHz) and was ≤ 3 ms for the two above-frequency suppressors (f(3)?= 4.166 and 4.282 kHz).  相似文献   

7.
The simultaneous presentation of two tones with frequencies f(1) and f(2) causes the perception of several combination tones in addition to the original tones. The most prominent of these are at frequencies f(2)-f(1) and 2f(1)-f(2). This study measured human physiological responses to the 2f(1)-f(2) combination tone at 500 Hz caused by tones of 750 and 1000 Hz with intensities of 65 and 55 dB SPL, respectively. Responses were measured from the cochlea using the distortion product otoacoustic emission (DPOAE), and from the auditory cortex using the 40-Hz steady-state magnetoencephalographic (MEG) response. The perceptual response was assessed by having the participant adjust a probe tone to cause maximal beating ("best-beats") with the perceived combination tone. The cortical response to the combination tone was evaluated in two ways: first by presenting a probe tone with a frequency of 460 Hz at the perceptual best-beats level, resulting in a 40-Hz response because of interaction with the combination tone at 500 Hz, and second by simultaneously presenting two f(1) and f(2) pairs that caused combination tones that would themselves beat at 40 Hz. The 2f(1)-f(2) DPOAE in the external auditory canal had a level of 2.6 (s.d. 12.1) dB SPL. The 40-Hz MEG response in the contralateral cortex had a magnitude of 0.39 (s.d. 0.1) nA m. The perceived level of the combination tone was 44.8 (s.d. 11.3) dB SPL. There were no significant correlations between these measurements. These results indicate that physiological responses to the 2f(1)-f(2) combination tone occur in the human auditory system all the way from the cochlea to the primary auditory cortex. The perceived magnitude of the combination tone is not determined by the measured physiological response at either the cochlea or the cortex.  相似文献   

8.
Listeners' sensitivity to interaural correlation of the envelope of high-frequency waveforms and whether such sensitivity might account for detectability in a masking-level difference paradigm were assessed. Thresholds of interaural envelope decorrelation (from a reference correlation of 1.0) were measured for bands of noise centered at 4 kHz and bandwidths ranging from 50-1600 Hz. Decorrelation of the envelope was achieved by "mixing" two independent narrow-band noises. Separately, with the same listeners, NoSo and NoS pi detection thresholds were measured for maskers of the same center frequency and bandwidths. For bandwidths of noise up to about 400 Hz, listeners were similarly sensitive to interaural decorrelation in both types of task. However, for bandwidths greater than 400 Hz or so, while sensitivity in the discrimination task was unaffected, sensitivity was reduced in the NoS pi conditions. Additional data suggested that listeners were able to maintain their sensitivity independent of bandwidth in the discrimination task by focusing on binaural information within select spectral regions of the stimuli.  相似文献   

9.
Vowels are characterized by peaks in their spectral envelopes: the formants. To gain insight into the perception of speech as well as into the basic abilities of the ear, sensitivity to modulations in the positions of these formants is investigated. Frequency modulation detection thresholds (FMTs) were measured for the center frequency of formantlike harmonic complexes in the absence and in the presence of simultaneous off-frequency formants (maskers). Both the signals and the maskers were harmonic complexes which were band-pass filtered with a triangular spectral envelope, on a log-log scale, into either a LOW (near 500 Hz), a MID (near 1500 Hz), or a HIGH region (near 3000 Hz). They had a duration of 250 ms, and either an 80- or a 240-Hz fundamental. The modulation rate was 5 Hz for the signals and 10 Hz for the maskers. A pink noise background was presented continuously. In a first experiment no maskers were used. The measured FMTs were roughly two times larger than previously reported just-noticeable differences for formant frequency. In a second experiment, no significant differences were found between the FMTs in the absence of maskers and those in the presence of stationary (i.e., nonfrequency modulated) maskers. However, under many conditions the FMTs were increased by the presence of simultaneous modulated maskers. These results indicate that frequency modulation detection interference (FMDI) can exist for formantlike complex tones. The FMDI data could be divided into two groups. For stimuli characterized by a steep (200-dB/oct) slope, it was found that the size of the FMDI depended on which cues were used for detecting the signal and masker modulations. For stimuli with shallow (50-dB/oct) slopes, the FMDI was reduced when the signal and the masker had widely differing fundamentals, implying that the fundamental information is extracted before the interference occurs.  相似文献   

10.
Release from masking caused by envelope fluctuations   总被引:1,自引:0,他引:1  
This paper examines how short-term energy fluctuations in a masker affect the thresholds for tones at frequencies above those of the masker. Two equally intense tones at 1060 and 1075 Hz produce up to 25 dB less masking than does a 1075-Hz tone set to the overall level of the two-tone complex. At wider frequency separations, two-tone complexes also produce less masking than the pure tone. These results indicate that envelope fluctuations in a masker, whose spectrum is confined to a single critical band, may result in release from masking. The release from masking probably is related to the comodulation masking release reported by Hall et al. [J. Acoust. Soc. Am. 76, 50-56 (1984b)] for modulated-noise maskers with bandwidths greater than one critical band. Further measurements with maskers, whose intensity level in the critical band around 1 kHz was 90 dB SPL, show similar masking by a pure tone and a 625- to 1075-Hz bandpass noise, but less masking by narrow-band noises. These results are inconsistent with a simple frequency selective energy-detector model and indicate that the auditory system can use periods of low masker energy as brief as a few ms to enhance detection of a tone. The results also imply that the upward spread of excitation is best represented by masking patterns for noises with bandwidths of several critical bands.  相似文献   

11.
Just-noticeable differences (jnds) of both interaural time delay (ITD) and interaural intensity difference (IID) were measured for binaural tones in the presence of broadband maskers. The tones were presented at 50 dB SPL, the target frequency was 500 Hz, and the masker frequency was 100-1000 Hz, with various combinations of ITD and IID. The time and amplitude jnds exhibit similar dependencies on target-to-masker ratio and masker type. At a given target-to-masker ratio, discrimination was generally best in the presence of diotic maskers and worst in the presence of the interaurally out-of-phase maskers. Results for the other masker types examined tended to fall in between these two extremes. Many of these data trends are consistent with predictions of the lateralization model and the position-variable model based on auditory-nerve activity.  相似文献   

12.
Simultaneous masking of a 20-ms, 1-kHz signal was investigated using 50-ms gated and continuous sinusoidal maskers with frequencies below, at, and above 1 kHz. Gated maskers can produce considerably (5-20 dB) more masking than continuous maskers, and this difference does not appear to result from the spread of energy produced by gating either the masker or the signal. For masker frequencies below the signal frequency, this difference in masking is primarily due to the detection of the cubic difference tone in the continuous condition. For masker frequencies at and above the signal frequency, the difference appears to be an important property of masking. Implications of this frequency-dependent effect for measures of frequency selectivity are discussed.  相似文献   

13.
Auditory steady-state responses (ASSRs) were elicited by simultaneously presenting multiple AM (amplitude-modulated) tones with carrier frequencies of 500, 1000, 2000, and 4000 Hz and modulation frequencies of 77, 85, 93, and 102 Hz, respectively. Responses were also evoked by separately presenting single 500- or 2000-Hz AM tones. The objectives of this study were (i) to determine the cochlear place specificity of single and multiple ASSRs using high-pass noise masking and derived-band responses, and (ii) to determine if there were any differences between single- and multiple-stimulus conditions. For all carrier frequencies, derived-band ASSRs for 1-octave-wide derived bands ranging in center frequency from 0.25 to 8 kHz had maximum amplitudes within a 1/2 octave of the carrier frequency. For simultaneously presented AM tones of 500, 1000, 2000, and 4000 Hz, bandwidths for the function of derived-band ASSR amplitude by derived-band center frequency were 476, 737, 1177, and 3039 Hz, respectively. There were no significant differences when compared to bandwidths of 486 and 1371 for ASSRs to AM tones of 500 or 2000 Hz presented separately. Results indicate that ASSRs to moderately intense stimuli (60 dB SPL) reflect activation of reasonably narrow cochlear regions, regardless of presenting AM tones simultaneously or separately.  相似文献   

14.
This study examines how simultaneous masking of a tone by bandlimited noise may be affected by nonlinear interactions among spectral components of the noise. Simultaneous masking patterns (signal threshold versus signal frequency) were obtained with three types of maskers: (A) a narrow-band noise, 50 Hz wide with variable center frequency fv, (B) pairs of narrow-band noises, each band 50 Hz wide with center frequencies fl and fu, and (C) wide-band noise formed by filling the spectral gap between the two bands of (B). The variable frequency fv was set to 1.0, 1.1, 1.2, and 1.3 kHz: fl was fixed at 1.0 kHz, and fu had values of 1.1, 1.2, and 1.3 kHz. In most conditions, the two-band maskers and the wideband maskers produced more masking than would be predicted from the masking produced by the single narrow-band maskers. For certain signal frequencies below the maskers, adding noise to fill the spectral gap of the two-band masker actually resulted in a 3- to 15-dB release from masking. These results reveal factors that may operate to confound modern measures of frequency selectivity.  相似文献   

15.
The influence of the degree of envelope modulation and periodicity on the loudness and effectiveness of sounds as forward maskers was investigated. In the first experiment, listeners matched the loudness of complex tones and noise. The tones had a fundamental frequency (F0) of 62.5 or 250 Hz and were filtered into a frequency range from the 10th harmonic to 5000 Hz. The Gaussian noise was filtered in the same way. The components of the complex tones were added either in cosine phase (CPH), giving a large crest factor, or in random phase (RPH), giving a smaller crest factor. For each F0, subjects matched the loudness between all possible stimulus pairs. Six different levels of the fixed stimulus were used, ranging from about 30 dB SPL to about 80 dB SPL in 10-dB steps. Results showed that, at a given overall level, the CPH and the RPH tones were louder than the noise, and that the CPH tone was louder than the RPH tone. The difference in loudness was larger at medium than at low levels and was only slightly reduced by the addition of a noise intended to mask combination tones. The differences in loudness were slightly smaller for the higher than for the lower F0. In the second experiment, the stimuli with the lower F0s were used as forward maskers of a 20-ms sinusoid, presented at various frequencies within the spectral range of the maskers. Results showed that the CPH tone was the least effective forward masker, even though it was the loudest. The differences in effectiveness as forward maskers depended on masker level and signal frequency; in order to produce equal masking, the level of the CPH tone had to be up to 35 dB above that of the RPH tone and the noise. The implications of these results for models of loudness are discussed and a model is presented based on neural activity patterns in the auditory nerve; this predicts the general pattern of loudness matches. It is suggested that the effects observed in the experiments may have been influenced by two factors: cochlear compression and suppression.  相似文献   

16.
Auditory filter bandwidths were estimated in three experiments. The first experiment was a profile-analysis experiment. The stimuli were composed of sinusoidal components ranging in frequency from 200 to 5000 Hz. The standard stimulus was the sum of equal-amplitude tones, and the signal stimulus had a power spectrum that varied up-down ... up-down. The number of components ranged from four to 60. Interval-by-interval level randomization prevented the change in level of a single component from reliably indicating the change from standard to signal. The second experiment was a notched-noise experiment in which the 1000-Hz tone to be detected was added to a noise with a notch arithmetically centered at 1000 Hz. Detection thresholds were estimated both in the presence of and in the absence of level randomization. In the third, hybrid, experiment a 1000-Hz tone was to be detected, and the masker was composed of equal-amplitude sinusoidal components ranging in frequency from 200 to 5000 Hz. For this experiment, thresholds were estimated both in the presence and absence of level variation. For both the notched-noise and hybrid experiments, only modest effects of level randomization were obtained. A variant of Durlach et al.'s channel model ["Towards a model for discrimination of broadband signals," J. Acoust. Soc. Am. 80, 63-72 (1986)] was used to estimate auditory filter bandwidths for all three experiments. When a two-parameter roex(p,r) filter weighting function was used to fit the data, bandwidth estimates were approximately two to three times as large for the two detection tasks than for the profile-analysis task.  相似文献   

17.
The detection of slow (5 Hz) center-frequency modulations of formants (signals) can be impaired by the simultaneous presentation of off-frequency modulated formants (maskers) to the same ear [J. Lyzenga and R. P. Carlyon, J. Acoust. Soc. Am. 105, 2792-2806 (1999)]. In the present study we examine this "formant-frequency modulation detection interference (FMDI)" for various binaural masker presentation schemes. Signals and maskers were formantlike complex tones, centered around 1500 and 3000 Hz, respectively. Fundamentals of 80 and 240 Hz were used. The signals were presented to the right ear. The maskers were presented either to the right, the left, or to both ears, and they were either unmodulated or modulated at a slow rate (10 Hz). They had the same fundamental as the signals. Hardly any interference was found for the unmodulated maskers. For modulated maskers, the amount of FMDI depended strongly on the binaural masker presentation scheme. Substantial interference was found for the ipsilateral maskers. Interference was smaller for the contralateral maskers. In both cases the FMDI increased with increasing masker level. Substantial interference was also found for the binaural maskers. Imposing different interaural time and level differences (ITDs and ILDs) on maskers and signals did not affect FMDI. The same was true for the ITD condition when the maskers had different fundamentals than the signals, though FMDI was slightly smaller here. The amount of interference for the binaural maskers was roughly equal to that of the corresponding monaural masker with the largest effect. The data could not be described accurately using a model based on the loudness of the maskers. On the other hand, they were well described by a model in which the amount of FMDI was predicted from a "weighted combination" of the monaural masker levels.  相似文献   

18.
In forward masking, performance may be affected by confusion, that is, by the difficulty of discriminating a suprathreshold signal from the preceding masker. This study investigated confusion effects for forward maskers composed of repeated bursts of a 100-Hz sinusoid followed by sinusoidal signals; such "pulsing" maskers produce confusion when the properties of the signal are identical to those of an individual masker "pulse." The level, frequency, and duration of the signal relative to an individual masker pulse, as well as offset-onset delay, were varied to determine the minimum change necessary to eliminate confusion. For maskers composed of 20-ms pulses, confusion was eliminated by changes in signal level of 5 dB or changes in signal frequency of 30 to 40 Hz. For maskers composed of 10-, 20-, or 40-ms pulses, confusion was eliminated by signal delays of 8 to 16 ms or by signal durations less than half or greater than twice the masker-pulse duration. Results with adaptive procedures designed to measure confusion-free or confusion-determined thresholds suggest that confusion effects can be minimized or avoided by extensive listener training with a procedure in which the signal and masker are not presented at similar intensities.  相似文献   

19.
The purpose of this investigation was to examine two stimulus parameters that were reasoned to be of importance to comodulation masking release (CMR). The first was the degree of fluctuation, or depth of modulation, in the masker bands, and the second was the temporal position of the signal with respect to the modulations of the masker. The investigation began by demonstrating the efficacy of sinusoidally amplitude-modulated (SAM) tonal complex maskers in eliciting CMR. "Nine-band" maskers, 650 ms in duration, were constructed by adding together nine SAM tones spaced at 100-Hz intervals from 300 to 1100 Hz. The rate of modulation for each SAM tone was 10 Hz, and the depth of modulation was 100%. Using such maskers, it was shown that when the on-frequency SAM tone had a modulation depth of 100%, the threshold for a 250-ms, 700-Hz tone improved monotonically as the modulation depths of the flanking SAM tones increased from 0% to 100%. When the on-frequency SAM tone had a modulation depth of 63%, some listeners performed optimally when the flanking SAM tones also exhibited a modulation depth of 63%, whereas others performed best when the flankers had modulation depths of 100%. With regard to signal position, a typical CMR effect was observed when the signal, consisting of a train of three 50-ms, 700-Hz tone bursts, was placed in the dips of the on-frequency masker. However, when the signal was placed at the peaks of the envelope, an increase in masking was observed for a comodulated masker.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The potential for interactions between steady-state evoked responses to simultaneous auditory stimuli was investigated in two bottlenose dolphins (Tursiops truncatus). Three experiments were conducted using either a probe stimulus (probe condition) or a probe in the presence of a masker (probe-plus-masker condition). In the first experiment, the probe and masker were sinusoidal amplitude-modulated (SAM) tones. Probe and masker frequencies and masker level were manipulated to provide variable masking conditions. Probe frequencies were 31.7, 63.5, 100.8, and 127.0 kHz. The second experiment was identical to the first except only the 63.5 kHz probe was used and maskers were pure tones. For the third experiment, thresholds were measured for the probe and probe-plus-masker conditions using two techniques, one based on the lowest detectable response and the other based on a regression analysis. Results demonstrated localized masking effects where lower frequency maskers suppressed higher frequency probes and higher amplitude maskers produced a greater masking effect. The pattern of pure tone masking was nearly identical to SAM tone masking. The two threshold estimates were similar in low masking conditions, but in high masking conditions the lowest detectable response tended to overestimate thresholds while the regression-based analysis tended to underestimate thresholds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号