首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have succeeded in growing high-quality single crystals of the valence-fluctuating system EuIr(2)Si(2), the divalent Eu system EuRh(2)Si(2) and the substitutional alloy Eu(Rh(1-x)Ir(x))(2)Si(2) across the range 0 < x < 1, which we characterized by means of x-ray diffraction, energy-dispersive x-ray spectroscopy, specific heat, magnetization and resistivity measurements. On increasing x, the divalent Eu ground state subsists up to x = 0.25 with a slight increase in Néel temperature, while for 0.3≤x < 0.7 a sharp hysteretic change in susceptibility and resistivity marks the first-order valence transition. For x?0.7 the broad feature observed in the physical properties is characteristic of the continuous valence evolution beyond the critical end point of the valence transition line, and the resistivity is reminiscent of Kondo-like behaviour while the Sommerfeld coefficient indicates a mass renormalization of at least a factor of 8. The resulting phase diagram is similar to those reported for polycrystalline Eu(Pd(1-x)Au(x))(2)Si(2) and EuNi(2)(Si(1-x)Ge(x))(2), confirming its generic character for Eu systems, and markedly different to those of homologue Ce and Yb systems, which present a continuous suppression of the antiferromagnetism accompanied by a very smooth evolution of the valence. We discuss these differences and suggest them to be related to the large polarization energy of the Eu half-filled 4f shell. We further argue that the changes in the rare earth valence between RRh(2)Si(2) and RIr(2)Si(2) (R = Ce, Eu, Yb) are governed by a purely electronic effect and not by a volume effect.  相似文献   

2.
We report structurally tuned superconductivity in a K(x)Fe(2-y)Se(2-z)S(z) (0 ≤ z ≤ 2) phase diagram. Superconducting T(c) is suppressed as S is incorporated into the lattice, eventually vanishing at 80% of S. The magnetic and conductivity properties can be related to stoichiometry on a poorly occupied Fe1 site and the local environment of a nearly fully occupied Fe2 site. The decreasing T(c) coincides with the increasing Fe1 occupancy and the overall increase in Fe stoichiometry from z = 0 to z = 2. Our results indicate that the irregularity of the Fe2-Se/S tetrahedron is an important controlling parameter that can be used to tune the ground state in the new superconductor family.  相似文献   

3.
Phase-sensitive order parameter symmetry test experiments are presented on the electron-doped high-T(c) cuprate Nd(2-x)Ce(x)CuO(4-y). These experiments have been conducted using zigzag-shaped thin film Josephson structures, in which the Nd(2-x)Ce(x)CuO(4-y) is connected to the low-T(c) superconductor Nb via an Au barrier layer. For the optimally doped as well as for the overdoped Nd(2-x)Ce(x)CuO(4-y), a clear predominant d(x2-y2)-wave behavior is observed at T=4.2 K. Both compounds were also investigated at T=1.6 K, presenting no indications for a change to a predominant s-wave symmetry with decreasing temperature.  相似文献   

4.
We show that antiferromagnetism in lightly (approximately 8%) Sn-doped CeIn3 terminates at a critical field mu0H(c) = 42 +/- 2 T. Electrical transport and thermodynamic measurements reveal the effective mass m* not to diverge, suggesting that cubic CeIn3 is representative of a critical spin-density wave (SDW) scenario, unlike the local quantum critical points reported in anisotropic systems such as CeCu(6-x)Au(x) and YbRh2Si(2-x)Ge(x). The existence of a maximum in m* at a lower field mu0H(x) = 30 +/- 1 T may be interpreted as a field-induced crossover from local moment to SDW behavior as the Néel temperature falls below the Fermi temperature.  相似文献   

5.
We have synthesized polycrystalline samples of Eu(1-x)K(x)Fe2As2 (x = 0-1) and carried out systematic characterization using x-ray diffraction, ac and dc magnetic susceptibility, and electrical resistivity measurements. A clear signature of the coexistence of a superconducting transition (T(c) = 5.5 K) with spin density wave (SDW) ordering is observed in our underdoped sample with x = 0.15. The SDW transition disappears completely for the x = 0.3 sample and superconductivity arises below 20 K. The superconducting transition temperature Tc increases with increase in the K content and a maximum Tc = 33 K is reached for x = 0.5, beyond which it decreases again. The doping dependent Tx phase diagram is extracted from the magnetic and electrical transport data. It is found that magnetic ordering of Eu moments coexists with the superconductivity up to x = 0.6. The isothermal magnetization data taken at 2 K for the doped samples suggest the 2+ valence state of the Eu ions. We also present the temperature dependence of the lower critical field H(c1) of the superconducting polycrystalline samples. The values of H(c1)(0) obtained for x = 0.3, 0.5, and 0.7 after taking the demagnetization factor into account are 202, 330, and 212 Oe, respectively. The London penetration depth λ(T) calculated from the lower critical field does not show exponential dependence at low temperature, as would be expected for a fully gapped clean s-wave superconductor. In contrast, it shows a T2 power law feature up to T = 0.3Tc, as observed in Ba(1-x)K(x)Fe2As2 and BaFe(2-x)Co(x)As2.  相似文献   

6.
We present investigations of the magnetic and electric transport properties, specific heat, and electronic structure of the intermetallic and strongly correlated system of CeRhSn(1-x)In(x) compounds. The main goal of this paper is to determine the hybridization energy between the f electron and conduction electron states, V(cf), and its influence on the ground state properties of the system. The complementary experimental data are discussed on the basis of the Anderson model for a periodic Kondo lattice. CeRhSn is known as a non-Fermi liquid, while CeRhIn is a valence fluctuating system. We discuss the ground state properties of CeRhSn(1-x)In(x) and compare the results with those obtained for the doped Ce-based Kondo insulators.  相似文献   

7.
The doping and temperature dependences of the Hall coefficient, R(H), and ab-plane resistivity in the normal state down to 350 mK is reported for oriented films of the electron-doped high-T(c) superconductor Pr(2-x)Ce(x)CuO(4-delta). The doping dependences of beta (rho=rho(0)+ATbeta) and R(H) (at 350 mK) suggest a quantum phase transition at a critical doping near x=0.165.  相似文献   

8.
The LaIn(3-x)Sn(x) alloy system is composed of superconducting Pauli paramagnets. For LaIn3 the superconducting critical temperature T(c) is approximately 0.7 K and it shows an oscillatory dependence as a function of Sn substitution, presenting its highest value T(c) ≈ 6.4 K for the LaSn3 end member. The superconducting state of these materials was characterized as being of the conventional type. We report our results for Gd3+ electron spin resonance measurements in the LaIn(3-x)Sn(x) compounds as a function of x. We show that the effective exchange interaction parameter J(fs) between the Gd3+ 4f local moment and the s-like conduction electrons is almost unchanged by Sn substitution and observe microscopically that LaSn3 is a conventional superconductor.  相似文献   

9.
We report a systematic study by (75)As nuclear-quadrupole resonance in LaFeAsO(1-x)F(x). The antiferromagnetic spin fluctuation found above the magnetic ordering temperature T(N) = 58 K for x = 0.03 persists in the regime 0.04 ≤ x ≤ 0.08, where superconductivity sets in. A dome-shaped x dependence of the superconducting transition temperature T(c) is found, with the highest T(c) = 27 K at x = 0.06, which is realized under significant antiferromagnetic spin fluctuation. With increasing x further, the antiferromagnetic spin fluctuation decreases, and so does T(c). These features resemble closely the cuprates La(2-x)Sr(x)CuO(4). In x = 0.06, the spin-lattice relaxation rate (1/T(1)) below T(c) decreases exponentially down to 0.13T(c), which unambiguously indicates that the energy gaps are fully opened. The temperature variation of 1/T(1) below T(c) is rendered nonexponential for other x by impurity scattering.  相似文献   

10.
Studies of magnetization, magnetoresistance, and magnetic oscillations in semiconductor-multiferroics Eu(1-x)Ce(x)Mn2O5 (x = 0.2-0.25) (ECMO) at temperatures ranging from 5 to 350 K in magnetic fields up to 6 T are presented. It is shown that phase separation and charge carrier self-organization in the crystals give rise to a layered superstructure perpendicular to the c axis. An effect of magnetic field cycling on the superstructure, magnetization, and magnetoresistance is demonstrated. X-ray diffraction studies of ECMO demonstrating the effect of magnetic field on the superstructure are presented. The de Haas-van Alphen magnetization oscillations in high magnetic fields and the temperature-induced magnetic oscillations in a fixed magnetic field are observed at low temperatures. Below 10 K the quantum corrections to magnetization due to the weak charge carrier localization in 2D superlattice layers occur. It is shown that at all the temperatures the Eu(1-x)Ce(x)Mn2O5 magnetic state is dictated by superparamagnetism of isolated ferromagnetic domains.  相似文献   

11.
We present measurements of the magnetic penetration depth, lambda(-2)(T), in Pr(2-x)Ce(x)CuO(4-y) and La(2-x)Ce(x)CuO(4-y) films at three Ce doping levels, x, near optimal. Optimal and overdoped films are qualitatively and quantitatively different from underdoped films. For example, lambda(-2)(0) decreases rapidly with underdoping but is roughly constant above optimal doping. Also, lambda(-2)(T) at low T is exponential at optimal and overdoping but is quadratic at underdoping. In light of other studies that suggest both d- and s-wave pairing symmetry in nominal optimally doped samples, our results are evidence for a transition from d- to s-wave pairing near optimal doping.  相似文献   

12.
Measurements on amorphous Mo1?xSix (0.27 ≤ × ≤ 0.77) show that with increasing x the superconducting transition temperature, Tc, decreases linearly with x for x ≤ x0 ≡ 0.63 ± 0.05. The superconducting transition width and normal state resistivity increase rapidly with increasing x as x approaches x0. For x > x0, Tc drops below 1.5K. Transmission electron diffraction measurements (0.65 ≤ × ≤ 0.75) detect the presence of a second amorphous phase which resembles a-Si only for samples with x ? 0.75. The behavior near x0 could be attributed to the onset of an electronic transition involving the conversion of metallically bonded Si to covalently bonded Si.  相似文献   

13.
We report on specific heat, magnetic susceptibility, and resistivity measurements on the compound Ce(1-x)LaxNi9Ge4 for various concentrations ranging from the stoichiometric system with x = 0 to the dilute limit x = 0.95. Our data reveal single-ion scaling with the Ce concentration and the largest ever recorded value of the electronic specific heat Deltac/T approximately 5.5 J K-2 mol(-1) at T = 0.08 K for the stoichiometric compound x = 0 without any trace of magnetic order. While in the doped samples Deltac/T increases logarithmically below 3 K down to 50 mK, their magnetic susceptibility behaves Fermi-liquid-like below 1 K. These properties make the compound Ce(1-x)LaxNi9Ge4 a unique system on the borderline between Fermi-liquid and non-Fermi-liquid physics.  相似文献   

14.
The gamma-->alpha isostructural transition in the Ce0.9-xLaxTh0.1 system is measured as a function of La alloying using specific heat, magnetic susceptibility, resistivity, thermal expansivity or striction measurements. A line of discontinuous transitions, as indicated by the change in volume, decreases exponentially from 118 K to close to 0 K with increasing La doping, and the transition changes from being first-order to continuous at a critical concentration, x(c) approximately 0.14. At the tricritical point, the coefficient of the linear T term in the specific heat gamma and the magnetic susceptibility increase rapidly near x(c) and approach large values at x=0.35 signifying that a heavy Fermi-liquid state evolves at large doping. The Wilson ratio reaches a value above 2 for a narrow range of concentrations near x(c), where the specific heat and susceptibility vary most rapidly with the doping concentration.  相似文献   

15.
High-resolution laser excitation spectra have been obtained for the 0-0, 1-1, and 0-1 bands of the B(2)Sigma(+)-X(2)Sigma(+) transition of YbCl and a rotational analysis has been performed on the (174)Yb(35)Cl and (172)Yb(35)Cl isotopomers. Comparison of the spin-rotation constant, gamma, for the B(2)Sigma(+) state with the lambda-doubling constant of the A(2)Pi(1/2) state (1) shows that the two excited states form a unique perturber pair arising from the 6psigma and 6ppi orbitals centered on the Yb(+) ion. The principal results for the B(2)Sigma(+) state are B(e)=0.097552(5) cm(-1), R(e)=2.43623(6) ?, gamma(e)=-2.1655(6)x10(-4) cm(-1), and DeltaG(1/2)=313.111(2) cm(-1). Copyright 2001 Academic Press.  相似文献   

16.
We examine the evolution of magnetic properties in the normal spinel oxides Mg(1-x)Cu(x)Cr2O4 using magnetization and heat capacity measurements. The end-member compounds of the solid solution series have been studied in some detail because of their very interesting magnetic behavior. MgCr2O4 is a highly frustrated system that undergoes a first-order structural transition at its antiferromagnetic ordering temperature. CuCr2O4 is tetragonal at room temperature as a result of Jahn-Teller active tetrahedral Cu2+ and undergoes a magnetic transition at 135 K. Substitution of magnetic cations for diamagnetic Mg2+ on the tetrahedral A site in the compositional series Mg(1-x)Cu(x)Cr2O4 dramatically affects magnetic behavior. In the composition range 0 ≤ x ≤ ≈0.3, the compounds are antiferromagnetic. A sharp peak observed at 12.5 K in the heat capacity of MgCr2O4 corresponding to a magnetically driven first-order structural transition is suppressed even for small x. Uncompensated magnetism--with open magnetization loops--develops for samples in the x range ≈0.43 ≤ x ≤ 1. Multiple magnetic ordering temperatures and large coercive fields emerge in the intermediate composition range 0.43 ≤ x ≤ 0.47. The Néel temperature increases with increasing x across the series while the value of the Curie-Weiss Θ(CW) decreases. A magnetic temperature-composition phase diagram of the solid solution series is presented.  相似文献   

17.
We show that finite angular momentum pairing chiral superconductors on the triangular lattice have point zeroes in the complex gap function. A topological quantum phase transition takes place through a nodal superconducting state at a specific carrier density x(c) where the normal state Fermi surface crosses the isolated zeros. For spin-singlet pairing, we show that the second-nearest-neighbor (d+id)-wave pairing can be the dominant pairing channel. The gapless critical state at x (c) approximately 0.25 has six Dirac points and is topologically nontrivial with a T3 spin relaxation rate below T(c). This picture provides a possible explanation for the unconventional superconducting state of Na(x)Co O(2). yH(2)O. Analyzing a pairing model with strong correlation using the Gutzwiller projection and symmetry arguments, we study these topological phases and phase transitions as a function of Na doping.  相似文献   

18.
We have studied non-Fermi-liquid (NFL) behavior in Pr(x)La(1-x)Pb3 with Gamma3 quadrupolar moments in the crystalline-electric-field ground state. The specific heat C/T shows NFL behavior in the very dilute region for x 相似文献   

19.
We report microwave cavity perturbation measurements of the temperature dependence of the penetration depth, lambda(T), and conductivity, sigma(T) of Pr(2-x)Ce(x)CuO(4-delta) (PCCO) crystals, as well as parallel-plate resonator measurements of lambda(T) in PCCO thin films. Penetration depth measurements are also presented for a Nd(2-x)Ce(x)CuO(4-delta) (NCCO) crystal. We find that Deltalambda(T) has a power-law behavior for T相似文献   

20.
We present measurements of the ab-plane magnetic penetration depth, lambda(T), in five optimally doped Pr(1.855)Ce(0.145)CuO(4-y) films for 1.6 K< or =T < or =T(c) approximately 24 K. Low resistivities, high superfluid densities n(s)(T) proportional, variant lambda(-2)(T), high T(c)'s, and small transition widths are reproducible and indicative of excellent film quality. For all five films, lambda(-2)(T)/lambda(-2)(0) at low T is well fitted by an exponential temperature dependence with a gap, Delta(min), of 0.85k(B)T(c). This behavior is consistent with a nodeless gap and is incompatible with d-wave superconductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号