首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 235 毫秒
1.
A hydrodynamic cavitation reactor (Ecowirl) based on swirling jet-induced cavitation has been used in order to allow the degradation of a waste dye aqueous solution (Rhodamine B, RhB). Cavitation generated by Ecowirl reactor was directly compared with cavitation generated by using multiple hole orifice plates. The effects of operating conditions and parameters such as pressure, pH of dye solution, initial concentration of RhB and geometry of the cavitating devices on the degradation rate of RhB were discussed. In similar operative conditions, higher extents of degradation (ED) were obtained using Ecowirl reactor rather than orifice plate. An increase in the ED from 8.6% to 14.7% was observed moving from hole orifice plates to Ecowirl reactor. Intensification in ED of RhB by using hydrodynamic cavitation in presence of NaOCl as additive has been studied. It was found that the decolourization was most efficient for the combination of hydrodynamic cavitation and chemical oxidation as compared to chemical oxidation and hydrodynamic cavitation alone. The value of ED of 83.4% was reached in 37 min using Ecowirl combined with NaOCl (4.0 mg L−1) as compared to the 100 min needed by only mixing NaOCl at the same concentration. At last, the energetic consumptions of the cavitation devices have been evaluated. Increasing the ED and reducing the treatment time, Ecowirl reactor resulted to be more energy efficient as compared to hole orifice plates, Venturi and other swirling jet-induced cavitation devices, as reported in literature.  相似文献   

2.
Nano-sized ZnO powder was introduced to act as the sonocatalyst after the treatment of high-temperature activation, and the ultrasound of low power was used as an irradiation source to induce nano-sized ZnO powder performing sonocatalytic degradation of acid red B and rhodamine B. At the same time, the effects of operational parameters such as solution pH value, initial concentration of dyestuff and addition amount of nano-sized ZnO powder have been examined in this paper. We found that the degradation ratios of acid red B and rhodamine B in the presence of nano-sized ZnO powder were much higher than that with only ultrasonic irradiation. However, the degradation ratio of acid red B was about two times higher than that of rhodamine B for the initial concentration of 10.0 mg/L, addition amount of 1.0 g/L nano-sized ZnO powder, solution acidity of pH 7.0 and 60 min irradiation experimental condition. The difference of the degradation ratios can be illustrated by the difference of chemical forms of acid red B and rhodamine B in aqueous solution and the surface properties of nano-sized ZnO particles. In addition, the researches on the kinetics of sonocatalytic reactions of acid red B and rhodamine B have also been performed and found to the follow pseudo first-order kinetics. All the experiments indicated that the sonocatalytic method in the presence of nano-sized ZnO powder was an advisable choice for the treatments of non- or low-transparent organic wastewaters in future.  相似文献   

3.
The sonolytic degradation of endocrine disrupting compound 4-cumylphenol (4-CyP) in aqueous solution was investigated. The influence of operating parameters for sonication process such as 4-CyP initial concentration, frequency, power, pH, temperature and saturating gas was examined. The extent of degradation was inversely proportional to the initial substrate concentration. The rate of 4-CyP degradation was frequency dependent. The degradation rate increased proportionally with increasing ultrasonic power from 20 to 100 W and temperature in the range of 20-50°C. The most favorable degradation pH was acidic media. Destruction in the presence of saturating gas follows the order: argon>air>nitrogen. The 4-CyP degradation was inhibited in the presence of nitrogen gas owing to the free radical scavenging effect in vapor phase within the bubbles of cavitation. The ultrasonic degradation of 4-CyP was clearly promoted in the presence of bromide anions and the promoting effect on degradation increased with increasing bromide concentration. At low 4-CyP concentration (0.05 mg L(-1)), bicarbonate ion drastically enhanced the rate of 4-CyP degradation. Experiments conducted using pure and natural water demonstrated that the sonolytic treatment was more efficient in the natural water compared to pure water.  相似文献   

4.
In this paper, the decomposition of Rhodamine B (RhB) by hydrodynamic cavitation (HC), acoustic cavitation (AC) and the combination of these individual methods (HAC) have been investigated. The degradation of 20 L RhB aqueous solution was carried out in a self-designed HAC reactor, where hydrodynamic cavitation and acoustic cavitation could take place in the same space simultaneously. The effects of initial concentration, inlet pressure, solution temperature and ultrasonic power were studied and discussed. Obvious synergies were found in the HAC process. The combined method achieved the best conversion, and the synergistic effect in HAC was even up to 119% with the ultrasonic power of 220 W in a treatment time of 30 min. The time-independent synergistic factor based on rate constant was introduced and the maximum value reached 40% in the HAC system. Besides, the hybrid HAC method showed great superiority in energy efficiency at lower ultrasonic power (88–176 W). Therefore, HAC technology can be visualized as a promising method for wastewater treatment with good scale-up possibilities.  相似文献   

5.
Degradation of reactive brilliant red K-BP in aqueous solution by means of ultrasonic cavitation was investigated for a variety of operating conditions. It is found that the degradation of reactive brilliant red K-BP in aqueous solution follows pseudo-first-order reaction kinetics and the degradation rate is dependent on the initial concentration of reactive brilliant red K-BP, the temperature and acidity of the aqueous medium. The effects of Fe2+, Fenton reagent and NaCl addition on the sonochemical degradation of reactive brilliant red K-BP were also investigated. The results obtained here indicate that the degradation rate of brilliant red K-BP in aqueous solution was substantially accelerated by Fe2+, NaCl or Fenton reagent addition.  相似文献   

6.
The ultrasonic degradation of p-nitrophenol (p-NP) in aqueous solution with CCl4 enhancement was studied. The effects of operating parameters such as CCl4 dosage, ultrasonic power, media temperature, the initial concentration of p-NP and initial pH value of the aqueous solution on the degradation of p-NP were investigated, and the enhancement mechanism of CCl4 for p-NP sonolysis was also discussed. The results showed that the sonochemical degradation of p-NP was obviously enhanced by adding CCl4. It attributed to the increase OH radicals concentration in the presence of CCl4 as a hydrogen atom scavenger, and the formation of some oxidizing agents such as free chlorine and chlorine-containing radicals. The degradation of p-NP follows a pseudo-first-order kinetics. The degradation rate of p-NP increased with decreasing the temperature, the initial pH value of the solution and decreasing the initial concentration of p-NP. It was also found that p-NP can be mineralized in this process.  相似文献   

7.
The ultrasonic degradation of poly(vinyl-pyrrolidone) (PVP) of different initial molecular weights was studied at a fixed temperature. The effect of solution concentration on the rate of degradation was investigated. A method of viscometry was used to study the degradation behavior and kinetic model was developed to estimate the degradation rate constant. The results were indicated that the rate of ultrasonic degradation increased with increasing molecular weight. It was found that rate constant decreases as the concentration increases. The calculated rate constants correlated in terms of inverse concentration and relative viscosity of PVP solutions. This behavior in the rate of degradation was interpreted in terms of viscosity and concentration of polymer solution. With increasing solution concentration, viscosity increases and it causes a reduction in the cavitation efficiency thus, the rate of degradation will be decreased. The experimental results show that the viscosity of polymers decreased with ultrasonic irradiation time and approached a limiting value, below which no further degradation took place. This study confirms the general assumption that the shear forces generated by the rapid motion of the solvent following cavitational collapse are responsible for the breakage of the chemical bonds within the polymer. The effect of polymer concentration can be interpreted in terms of the increase in viscosity with concentration, causing the molecules to become less mobile in solution and the velocity gradients around the collapsing bubbles to, therefore, become smaller.  相似文献   

8.
Ultrasonic degradation of polyvinyl alcohol (PVA) was carried out in aqueous solution at 25 degrees C. In this experiment, the effect of solution concentration on the rate of degradation was investigated. Kinetics of degradation was studied by viscometry method. The calculated rate constants indicate that degradation rate of PVA solutions decreases with increasing of solution concentration (C= g lit(-1)). The calculated rate constants correlated in terms of reverse concentration and relative viscosity of PVA solutions. This behavior in the rate of degradation was interpreted in terms of viscosity and concentration of polymer solution. With increasing solution concentration, viscosity increases and it causes a reduction in the cavitation efficiency thus, the rate of degradation will be decreased.  相似文献   

9.
Sonochemical degradation of phenol (Ph), 4-isopropylphenol (4-IPP) and Rhodamine B (RhB) in aqueous solutions was investigated for a large range of initial concentrations in order to analyze the reaction kinetics. The initial rates of substrate degradation and H2O2 formation as a function of initial concentrations were determined. The obtained results show that the degradation rate increases with increasing initial substrate concentration up to a plateau and that the sonolytic destruction occurs mainly through reactions with hydroxyl radicals in the interfacial region of cavitation bubbles. The rate of H2O2 formation decreases with increasing substrate concentration and reaches a minimum, followed by almost constant production rate for higher substrate concentrations. Sonolytic degradation data were analyzed by the models of Okitsu et al. [K. Okitsu, K. Iwasaki, Y. Yobiko, H. Bandow, R. Nishimura, Y. Maeda, Sonochemical degradation of azo dyes in aqueous solution: a new heterogeneous kinetics model taking into account the local concentration OH radicals and azo dyes, Ultrason. Sonochem. 12 (2005) 255–262.] and Seprone et al. [N. Serpone, R. Terzian, H. Hidaka, E. Pelizzetti, Ultrasonic induced dehalogenation and oxidation of 2-, 3-, and 4-chlorophenol in air-equilibrated aqueous media. Similarities with irradiated semiconductor particulates, J. Phys. Chem. 98 (1994) 2634–2640.] developed on the basis of a Langmuir-type mechanism. The five linearized forms of the Okitsu et al.’s equation as well as the non-linear curve fitting analysis method were discussed. Results show that it is not appropriate to use the coefficient of determination of the linear regression method for comparing the best-fitting. Among the five linear expressions of the Okitsu et al.’s kinetic model, form-2 expression very well represent the degradation data for Ph and 4-IPP. Non-linear curve fitting analysis method was found to be the more appropriate method to determine the model parameters. An excellent representation of the experimental results of sonolytic destruction of RhB was obtained using the Serpone et al.’s model. The Serpone et al.’s model gives a worse fit for the sonolytic degradation data of Ph and 4-IPP. These results indicate that Ph and 4-IPP undergo degradation predominantly at the bubble/solution interface, whereas RhB undergoes degradation at both bubble/solution interface and in the bulk solution.  相似文献   

10.
The degradation of an aqueous solution of dichlorvos, a commonly used pesticide in India, has been systematically investigated using hydrodynamic cavitation reactor. All the experiments have been carried out using a 20 ppm solution of commercially available dichlorvos. The effect of important operating parameters such as inlet pressure (over a range 3-6 bar), temperature (31 °C, 36 °C and 39 °C) and pH (natural pH = 5.7 and acidic pH = 3) on the extent of degradation has been investigated initially. It has been observed that an optimum value of pressure gives maximum degradation whereas low temperature and pH of 3 are favorable. Intensification studies have been carried out using different additives such as hydrogen peroxide, carbon tetrachloride, and Fenton’s reagent. Use of hydrogen peroxide and carbon tetrachloride resulted in the enhancement of the extent of degradation at optimized conditions but significant enhancement was obtained with the combined use of hydrodynamic cavitation and Fenton’s chemistry. The maximum extent of degradation as obtained by using a combination of hydrodynamic cavitation and Fenton’s chemistry was 91.5% in 1 h of treatment time. The present work has conclusively established that hydrodynamic cavitation in combination with Fenton’s chemistry can be effectively used for the degradation of dichlorvos.  相似文献   

11.
A novel method of laser cavitation (LC) was proposed for degrading organic dye wastewater. Rhodamine B (RhB) aqueous solution was employed as the simulated organic dye wastewater, and a LC system was designed to conduct the experiments of degrading RhB. The effects of laser energy, initial concentration and cavitation time on the degradation were investigated. Moreover, the degradation kinetics, degradation mechanism and energy efficiency were analyzed. The experimental results indicate that RhB aqueous solution can be degraded effectively by LC and the degradation follows the pseudo-first-order kinetics. The extent of degradation increases by 27.6% with the rise of laser energy (50–100 mJ) while it decreases by 7.8% with increasing the initial concentration from (20–40 mg/L), but RhB can not be degraded when exceeding 100 mg/L. The degradation extent of RhB at 100 mJ and 20 mg/L for 3 h is 81.11%, and the RhB solution is almost completely degraded at 150 mJ (98.4%). The degradation velocity of RhB rises firstly and then decreases as the cavitation time increases. The degradation of RhB by LC can be attributed to the N-de-ethylation and chromophore cleavage caused by oxidation of hydroxyl (OH) radical and thermal decomposition. LC has a higher energy efficiency compared with other methods and is more energy efficient at lower laser energy.  相似文献   

12.
A novel method of treating a dye solution has been studied by hydrodynamic cavitation using multiple hole orifice plates. The present work deals with the effect of geometry of the multiple hole orifice plates on the degradation of a cationic dye rhodamine B (rhB) solution. The efficiency of this technique has been compared with the cavitation generated by ultrasound and it has been found that there is substantial enhancement in the extent of degradation of this dye solution using hydrodynamic cavitation. Large-scale operation coupled with better energy efficiency makes this technique a viable alternative for conventional cavitational reactors.  相似文献   

13.
Aquasonolysis rates and products of selected cyclic C(6)H(x) hydrocarbons, benzene, 1,3-cyclohexadiene, 1,4-cyclohexadiene, cyclohexene, cyclohexane, and methylcyclopentane have been investigated. The sonolysis of selected compounds in aqueous solution follows first-order kinetics, and the aquasonolysis rate correlated well with the water solubility. The degradation rate decreased with the increase of initial concentration. The effect of initial concentration on the degradation of cyclohexene was more significant than that of benzene. The transfer process of organic solutes between cavitation bubbles and the bulk liquid affects the rates and products of their aquasonolysis.  相似文献   

14.
Advanced oxidation processes such as cavitation and Fenton chemistry have shown considerable promise for wastewater treatment applications due to the ease of operation and simple reactor design. In this review, hybrid methods based on cavitation coupled with Fenton process for the treatment of wastewater have been discussed. The basics of individual processes (Acoustic cavitation, Hydrodynamic cavitation, Fenton chemistry) have been discussed initially highlighting the need for combined processes. The different types of reactors used for the combined processes have been discussed with some recommendations for large scale operation. The effects of important operating parameters such as solution temperature, initial pH, initial pollutant concentration and Fenton’s reagent dosage have been discussed with guidelines for selection of optimum parameters. The optimization of power density is necessary for ultrasonic processes (US) and combined processes (US/Fenton) whereas the inlet pressure needs to be optimized in the case of Hydrodynamic cavitation (HC) based processes. An overview of different pollutants degraded under optimized conditions using HC/Fenton and US/Fenton process with comparison with individual processes have been presented. It has been observed that the main mechanism for the synergy of the combined process depends on the generation of additional hydroxyl radicals and its proper utilization for the degradation of the pollutant, which is strongly dependent on the loading of hydrogen peroxide. Overall, efficient wastewater treatment with high degree of energy efficiency can be achieved using combined process operating under optimized conditions, as compared to the individual process.  相似文献   

15.
The degradation of ethylbenzene in aqueous solution by 520 kHz ultrasound was investigated. The products formed were analysed using solid phase microextraction (SPME), a sampling technique that allows convenient GC-MS and GC-FID analysis in the micromolar range. A broad range of monosubstituted monocyclic and dicyclic aromatic hydrocarbons was found as well as some oxygenated products. The results clearly indicate that pyrolysis is an important pathway of ethylbenzene degradation. The side chain is dehydrogenated, forming styrene, or cleaved. The radicals formed upon cleavage are subsequently added to the double bond of the styrene side chain or recombined. This mechanism explains the formation of most of the products. Formation and breakdown of the reaction products follow first-order kinetics in spite of the fact that the selectivity of the reactions depends on the initial ethylbenzene concentration considerably. Changes in the temperature and the pressure of cavitation are expected to cause this dependence.  相似文献   

16.
It is well established that prolonged exposure of solutions of macromolecules to high-energy ultrasonic waves produces a permanent reduction in viscosity. It is generally agreed as well and also this study proved the hydrodynamic forces to have the primary importance in degradation. According to this study the sonolytic degradation of aqueous carboxymethylcellulose polymer or polymer mixtures is mainly depended on the initial dynamic viscosity of the polymer solution when the dynamic viscosity values are in the area range enabling intense cavitation. The higher was the initial dynamic viscosity the faster was the degradation. When the initial dynamic viscosities of the polymer solutions were similar the sonolytic degradation was dependent on the molecular mass and on the concentration of the polymer. The polymers with high molecular mass or high polymer concentration degraded faster than the polymers having low molecular mass or low polymer concentration. The initial dynamic viscosities were adjusted using polyethyleneglycol.  相似文献   

17.
钠基膨润土与羟基铁溶液反应,经过焙烧,制得性能良好的纳米复合型催化剂,结合比表面孔隙分析(BET)、X射线衍射谱(XRD)和高分辨扫描电镜(HRTEM)对催化剂的比表面积、晶相和粒度进行表征。用光度法对该催化剂降解染料罗丹明B进行了研究,详细考察了溶液起始pH值、H2O2浓度、催化剂用量和起始浓度对降解的影响以及催化剂的可重复使用性,紫外-可见光谱对降解过程进行跟踪检测,并对复相光助Fenton过程与均相光助Fenton过程进行了比较。结果表明,复合型催化剂具有很高的比表面积,铁以高催化活性的α-Fe2O3存在于复合催化剂中;在pH 3.0,催化剂浓度为0.3 g·L-1,H2O2浓度为10 mmol·L-1实验条件下,100 mL 2.5×10-5 mol·L-1罗丹明B,紫外光照射4 h后,紫外-可见光谱显示罗丹明B的特征峰消失,其脱色率和CODCr去除率分别为97%和71%,对该催化剂进行处理后,可以重复使用,复相光降解率要远大于均相光降解率。  相似文献   

18.
The degradation of azo dye direct sky blue 5B by sonication combined with zero-valent iron (US-Fe(0))was investigated and an evident synergistic effect was observed. The synergetic effect is mainly due to the increase of ()OH radical concentration from Fenton's reaction. The ()OH radical concentrations in sole sonication and US-Fe(0) process were detected by using terephthalic acid as a fluorescent probe and found that ()OH radicals were generated continuously during sonication and the production of ()OH radicals in US-Fe(0) process was much higher than that in sole sonication. The degradation of direct sky blue 5B followed a pseudo-first-order kinetics and the degradation rate constants were found to be 0.0206 and 0.169 min(-1) with sole sonication and US-Fe(0) process respectively. It was also found that the degradation ratio of direct sky blue 5B increased with the increase of zero-valent iron dosage and decrease of pH value of the dye aqueous solution. The degradation mechanism of direct sky blue 5B with US-Fe(0) process was discussed by the changes of UV-Vis spectrogram of the dye during degradation. The dramatic changes of UV spectra showed a disappearance of both azo and aromatic groups during the degradation.  相似文献   

19.
20.
The present work demonstrates the application of the combination of hydrodynamic cavitation (HC) and the heterogeneous Fenton process (HF, Fe0/H2O2) for the decolorization of azo dye Orange G (OG). The effects of main affecting operation conditions such as the inlet fluid pressure, initial concentration of OG, H2O2 and zero valent iron (ZVI), the fixed position of ZVI, and medium pH on decolorization efficiency were discussed with guidelines for selection of optimum parameters. The results revealed that the acidic conditions are preferred for OG decolorizaiton. The decolorization rate increased with increasing H2O2 and ZVI concentration and decreased with increasing OG initial concentration. Besides, the decolorization rate was strongly dependent on the fixed position of ZVI. The analysis results of degradation products using liquid chromatography–ESI–TOF mass spectrometry revealed that the degradation mechanism of OG proceeds mainly via reductive cleavage of the azo linkage due to the attack of hydroxyl radical. The present work has conclusively established that the combination of HC and HF can be more energy efficient and gives higher decolorization rate of OG as compared with HC and HF alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号