共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
水溶性膦配体的合成方法 总被引:5,自引:2,他引:5
1984年,Ruhrchemie公司和Rhone-Poulenc公司合作,第一次成功地将水溶性铑-膦配合物HRh(CO)(TPPTS)3(TPPTS:P(m-C6H4SO3Na)3用于催化丙烯氢甲酰化的工业化生产(简称为RCH/RP过程[1,2])以... 相似文献
5.
温控相转移催化--水/有机两相催化新进展 总被引:14,自引:0,他引:14
综述了“温控相转移催化”的原理,温控膦配体的设计、合成及其在水溶性极小的底物高碳烯烃的水/有机两相氢甲酰化反应中的应用效果. 相似文献
6.
Nonionic water soluble complex Ru 3(CO) 9(PETPP) 3 with the function of thermoregulated phase transfer catalysis was prepared. The catalytic activity and the recycle effect of Ru 3(CO) 9(PETPP) 3 for hydrogenation of styrene in aqueous/organic biphase catalysis system were studied. In addition, effects of reaction temperature, hydrogen pressure and reaction time were also investigated. The results showed that the reaction takes place mainly in organic phase at higher temperature (80 ℃). Under the conditions of θ =80 ℃, p (H 2)=2 MPa and t =3 h, both the PhCH∶CH 2 conversion and PhC 2H 5 selectivity are 100%. The PhCH∶CH 2 conversion is still 98 2% after reuse of the catalyst for 20 times. The catalytic performance of Ru 3(CO) 9(TPPTS) 3, Ru 3(CO) 9(PETPP) 3, Ru 3(CO) 9(TPPMS) 3 and Ru 3(CO) 9(TPP) 3 for biphase hydrogenation of styrene was compared. The experimental results for Ru 3(CO) 9(PETPP) 3 verified that there is a thermoregulated phase transfer catalysis process in the reaction system. 相似文献
7.
8.
9.
水溶性膦配体的合成及进展 总被引:4,自引:0,他引:4
水溶性膦配体的合成及进展郑晓来,王艳华,左焕培(大连理工大学,大连116012)关键词水溶性膦配体,均相络合催化,水/有机两相反应1.前言贵金属催化剂的分离回收问题一直是均相络合催化研究领域的一个热点。近年来,水/有机两相催化体系(Aqueous/o... 相似文献
10.
过渡金属络合物催化的均相不对称氢化反应是合成手性化合物的重要方法之一,目前主要集中于钌、铑、铱和钯等贵重过渡金属催化体系,这些贵重过渡金属催化体系面临着地球储量有限、价格昂贵和重金属污染环境等问题,因而发展地球储量丰富、价格低廉、无毒或低毒且对环境友好的铁、钴、镍和铜的均相不对称氢化反应催化体系符合现代化学可持续发展的要求和趋势.简要综述了近些年来廉价金属镍催化的均相不对称氢化反应研究领域的新进展,基于前手性不饱和化合物双键的不同类型,即碳-氧双键(C=O)、碳-碳双键(C=C)以及碳-氮双键(C=N)等,依次介绍它们的研究现状,目前已经取得了突破和可观的研究成果,系统地分析了镍催化体系中催化氢化不同类型底物的优势与不足,并展望了未来的研究方向. 相似文献
11.
12.
The water‐soluble phosphine ligands, 1,3,5‐triaza‐7‐phosphatricyclo[3.3.1.13,7]decane (tpa) and 1‐alkyl‐1‐azonia‐3,5‐diaza‐7‐phosphatricyclo[3.3.1.13,7]decane iodides (Rtpa+I−), with alkyl=methyl(mtpa+I−), ethyl (etpa+I−) and n‐propyl, (ptpa+I−), and mtpa+Cl− react with [Rh2Cl2(CO)4] giving the rhodium(I) complexes [RhCl(CO)(tpa)2], [RhI(CO)(Rtpa+I−)2], [RhCl‐(CO)(mtpa+Cl−)3] and [RhI(CO)(Rtpa+I−)3]. The properties and reactivities of the complexes have been investigated using 1H and 31PNMR and IR spectroscopies. The five‐coordinate complexes in solutions show dynamic properties. The complexes are catalysts of the water‐gas shift reaction, the hydrogenation of CC and CO bonds, the hydroformylation of alkenes and the isomerization of unsaturated compounds. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
13.
14.
15.
Sylvain S. Bosquain Antoine Dorcier Paul J. Dyson Mikael Erlandsson Luca Gonsalvi Gábor Laurenczy Maurizio Peruzzini 《应用有机金属化学》2007,21(11):947-951
The water‐soluble ruthenium(II) complexes [Cp′RuX(PTA)2]Y and [CpRuCl(PPh3)(mPTA)]OTf (Cp′ = Cp, Cp*, X = Cl and Y = nil; or X = MeCN and Y = PF6; PTA = 1,3,5‐triaza‐7‐phosphaadamantane; mPTA = 1‐methyl‐1,3,5‐triaza‐7‐phosphaadamantane) were used as catalyst precursors for the hydrogenation of CO2 and bicarbonate in aqueous solutions, in the absence of amines or other additives, under relatively mild conditions (100 bar H2, 30–80 °C), with moderate activities. Kinetic studies showed that the hydrogenation of HCO3? proceeds without an induction period, and that the rate strongly depends on the pH of the reaction medium. High‐pressure multinuclear NMR spectroscopy revealed that the ruthenium(II) chloride precursors are quantitatively converted into the corresponding hydrides under H2 pressure. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
16.
17.
Hofstetter K Lutz J Lang I Witholt B Schmid A 《Angewandte Chemie (International ed. in English)》2004,43(16):2163-2166
18.
19.
Prof. Dr. Anton Vidal‐Ferran Dr. Ignasi Mon Antonio Bauzá Prof. Dr. Antonio Frontera Laura Rovira 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(32):11417-11426
Herein we report the use of polyether binders as regulation agents (RAs) to enhance the enantioselectivity of rhodium‐catalyzed transformations. For reactions of diverse substrates mediated by rhodium complexes of the α,ω‐bisphosphite‐polyether ligands 1 – 5 , a – d , the enantiomeric excess (ee) of hydroformylations was increased by up to 82 % (substrate: vinyl benzoate, 96 % ee), and the ee value of hydrogenations was increased by up to 5 % (substrate: N‐(1‐(naphthalene‐1‐yl)vinyl)acetamide, 78 % ee). The ligand design enabled the regulation of enantioselectivity by generation of an array of catalysts that simultaneously preserve the advantages of a privileged structure in asymmetric catalysis and offer geometrically close catalytic sites. The highest enantioselectivities in the hydroformylation of vinyl acetate with ligand 4 b were achieved by using the Rb[B(3,5‐(CF3)2C6H3)4] (RbBArF) as the RA. The enantioselective hydrogenation of the substrates 10 required the rhodium catalysts derived from bisphosphites 3 a or 4 a , either alone or in combination with different RAs (sodium, cesium, or (R,R)‐bis(1‐phenylethyl)ammonium salts). This design approach was supported by results from computational studies. 相似文献