首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of 2,6‐diformylpyridine with diverse amines and PdII ions gave rise to a variety of metallosupramolecular species, in which the PdII ion is observed to template a tridentate bis(imino)pyridine ligand. These species included a mononuclear complex as well as [2+2] and [3+3] macrocycles. The addition of pyridine‐containing macrocyclic capping ligands allows for topological complexity to arise, thereby enabling the straightforward preparation of structures that include a [2]catenane, a [2]rotaxane, and a doubly threaded [3]rotaxane.  相似文献   

2.
A dinuclear PdII complex possessing a cyclic ligand was developed as a novel doubly threaded [3]rotaxane scaffold and applied as a rotaxane cross‐linker reagent. The dinuclear complex (PdMC)2 was prepared by one‐step macrocyclization followed by the double palladation reaction. 1H NMR analysis and UV/Vis measurements revealed the formation of a doubly threaded pseudo[3]rotaxane by the complexation of (PdMC)2 with 2 equivalents of 2,6‐disubstituted pyridine 3 through double metal coordination. The treatment of (PdMC)2 with 2 equivalents of 4‐vinylpyridine (VP) afforded a doubly threaded [3]rotaxane cross‐linker (PdMC‐VP)2 . Radical co‐polymerization of VP and t‐butylstyrene in the presence of (PdMC‐VP)2 afforded a stable rotaxane cross‐linked polymer (RCP). An elastic RCP was also prepared by using n‐butyl acrylate as a monomer. The obtained RCPs exhibited higher swelling ability and higher mechanical toughness compared with the corresponding covalent cross‐linked polymers.  相似文献   

3.
The use of stimuli to induce reversible structural transformations in metallosupramolecular systems is of keen interest to chemists seeking to mimic the way that Nature effects conformational changes in biological machinery. While a wide array of stimuli have been deployed towards this end, stoichiometric changes have only been explored in a handful of examples. Furthermore, switching has generally been between only two distinct states. Here we use a simple 2‐(1‐(pyridine‐4‐methyl)‐1H‐1,2,3‐triazol‐4‐yl)pyridine “click” ligand in combination with PdII in various stoichiometries and concentrations to quantitatively access and cycle between three distinct species: a [PdL2]2+ monomer, a [Pd2L2]4+ dimer, and a [Pd9L12]18+ cage.  相似文献   

4.
The present work reports the introduction of pyridine bisamine terdentate ligands in the structure of a pirouetting copper rotaxane. Rotaxane 2 [PF6] constitutes the first example of the incorporation of imine‐based dynamic covalent chemistry in the synthesis of switchable copper‐complexed interlocked systems. In this rotaxane, the substitution of the classical terpyridine terdentate unit by a pyridine bisamine moiety has led to a significant stabilization of the pentacoordinated site. That fact has been evidenced by EPR spectroscopy and cyclic voltammetry. Regarding the tetracoordinated site, the congestion around the coordination sphere has been reduced to accelerate the typically slow reorganization of the CuII. Ethynyl‐3,8‐substitution on the axis phenanthroline along with the 2,9‐diphenyl‐1,10‐phenanthroline (dpp) present in the macrocycle afforded a very stable coordination environment for CuI, which is at the same time labile upon oxidation. In summary, the incorporation of a pyridine bisamine unit as a terdentate ligand and the optimization of the bidentate ligand of the axle not only has led to a simplification of the synthetic procedures, but it has also given rise to a bistable systems with an enhanced energetic separation between states and an acceleration of the reorganization processes. Thus far, rotaxane 2 [PF6] presents the fastest switching cycle reported to date in copper‐interlocked dynamic systems.  相似文献   

5.
A dinuclear PdII complex possessing a cyclic ligand was developed as a novel doubly threaded [3]rotaxane scaffold and applied as a rotaxane cross-linker reagent. The dinuclear complex (PdMC)2 was prepared by one-step macrocyclization followed by the double palladation reaction. 1H NMR analysis and UV/Vis measurements revealed the formation of a doubly threaded pseudo[3]rotaxane by the complexation of (PdMC)2 with 2 equivalents of 2,6-disubstituted pyridine 3 through double metal coordination. The treatment of (PdMC)2 with 2 equivalents of 4-vinylpyridine (VP) afforded a doubly threaded [3]rotaxane cross-linker (PdMC-VP)2 . Radical co-polymerization of VP and t-butylstyrene in the presence of (PdMC-VP)2 afforded a stable rotaxane cross-linked polymer (RCP). An elastic RCP was also prepared by using n-butyl acrylate as a monomer. The obtained RCPs exhibited higher swelling ability and higher mechanical toughness compared with the corresponding covalent cross-linked polymers.  相似文献   

6.
A series of cyclometalated PdII complexes that contain π‐extended R? C^N^N? R′ (R? C^N^N? R′=3‐(6′‐aryl‐2′‐pyridinyl)isoquinoline) and chloride/pentafluorophenylacetylide ligands have been synthesized and their photophysical and photochemical properties examined. The complexes with the chloride ligand are emissive only in the solid state and in glassy solutions at 77 K, whereas the ones with the pentafluorophenylacetylide ligand show phosphorescence in the solid state (λmax=584–632 nm) and in solution (λmax=533–602 nm) at room temperature. Some of the complexes with the pentafluorophenylacetylide ligand show emission with λmax at 585–602 nm upon an increase in the complex concentration in solutions. These PdII complexes can act as photosensitizers for the light‐induced aerobic oxidation of amines. In the presence of 0.1 mol % PdII complex, secondary amines can be oxidized to the corresponding imines with substrate conversions and product yields up to 100 and 99 %, respectively. In the presence of 0.15 mol % PdII complex, the oxidative cyanation of tertiary amines could be performed with product yields up to 91 %. The PdII complexes have also been used to sensitize photochemical hydrogen production with a three‐component system that comprises the PdII complex, [Co(dmgH)2(py)Cl] (dmgH=dimethylglyoxime; py=pyridine), and triethanolamine, and a maximum turnover of hydrogen production of 175 in 4 h was achieved. The excited‐state electron‐transfer properties of the PdII complexes have been examined.  相似文献   

7.
The simple combination of PdII with the tris‐monodentate ligand bis(pyridin‐3‐ylmethyl) pyridine‐3,5‐dicarboxylate, L , at ratios of 1:2 and 3:4 demonstrated the stoichiometrically controlled exclusive formation of the “spiro‐type” Pd1L2 macrocycle, 1 , and the quadruple‐stranded Pd3L4 cage, 2 , respectively. The architecture of 2 is elaborated with two compartments that can accommodate two units of fluoride, chloride, or bromide ions, one in each of the enclosures. However, the entry of iodide is altogether restricted. Complexes 1 and 2 are interconvertible under suitable conditions.  相似文献   

8.
A tray‐shaped PdII3AuI3 complex ( 1 ) is prepared from 3,5‐bis(3‐pyridyl)pyrazole by means of tricyclization with AuI followed by PdII clipping. Tray 1 is an efficient scaffold for the modular assembly of [3×n] AuI clusters. Treatment of 1 with the AuI3 tricyclic guest 2 in H2O/CH3CN (7:3) or H2O results in the selective formation of a [3×2] cluster ( 1 ? 2 ) or a [3×3] cluster ( 1 ? 2 ? 1 ), respectively. Upon subsequent addition of AgI ions, these complexes are converted to an unprecedented Au3–Au3–Ag–Au3–Au3 metal ion cluster.  相似文献   

9.
A tray‐shaped PdII3AuI3 complex ( 1 ) is prepared from 3,5‐bis(3‐pyridyl)pyrazole by means of tricyclization with AuI followed by PdII clipping. Tray 1 is an efficient scaffold for the modular assembly of [3×n] AuI clusters. Treatment of 1 with the AuI3 tricyclic guest 2 in H2O/CH3CN (7:3) or H2O results in the selective formation of a [3×2] cluster ( 1 ⋅ 2 ) or a [3×3] cluster ( 1 ⋅ 2 ⋅ 1 ), respectively. Upon subsequent addition of AgI ions, these complexes are converted to an unprecedented Au3–Au3–Ag–Au3–Au3 metal ion cluster.  相似文献   

10.
《化学:亚洲杂志》2017,12(1):145-158
Two classes of cationic palladium(II) acetylide complexes containing pincer‐type ligands, 2,2′:6′,2′′‐terpyridine (terpy) and 2,6‐bis(1‐butylimidazol‐2‐ylidenyl)pyridine (C^N^C), were prepared and structurally characterized. Replacing terpy with the strongly σ‐donating C^N^C ligand with two N‐heterocyclic carbene (NHC) units results in the PdII acetylide complexes displaying phosphorescence at room temperature and stronger intermolecular interactions in the solid state. X‐ray crystal structures of [Pd(terpy)(C≡CPh)]PF6 ( 1 ) and [Pd(C^N^C)(C≡CPh)]PF6 ( 7 ) reveal that the complex cations are arranged in a one‐dimensional stacking structure with pair‐like PdII⋅⋅⋅PdII contacts of 3.349 Å for 1 and 3.292 Å for 7 . Density functional theory (DFT) and time‐dependent density functional theory (TD‐DFT) calculations were used to examine the electronic properties. Comparative studies of the [Pt(L)(C≡CPh)]+ analogs by 1H NMR spectroscopy shed insight on the intermolecular interactions of these PdII acetylide complexes. The strong Pd−Ccarbene bonds render 7 and its derivative sufficiently stable for investigation of photo‐cytotoxicity under cellular conditions.  相似文献   

11.
A series of new, easily activated NHC–PdII precatalysts featuring a trans‐oriented morpholine ligand were prepared and evaluated for activity in carbon‐sulfur cross‐coupling chemistry. [(IPent)PdCl2(morpholine)] (IPent=1,3‐bis(2,6‐di(3‐pentyl)phenyl)imidazol‐2‐ylidene) was identified as the most active precatalyst and was shown to effectively couple a wide variety of deactivated aryl halides with both aryl and alkyl thiols at or near ambient temperature, without the need for additives, external activators, or pre‐activation steps. Mechanistic studies revealed that, in contrast to other common NHC–PdII precatalysts, these complexes are rapidly reduced to the active NHC–Pd0 species at ambient temperature in the presence of KOtBu, thus avoiding the formation of deleterious off‐cycle PdII–thiolate resting states.  相似文献   

12.
The C3‐symmetric chiral propylated host‐type ligands (±)‐tris(isonicotinoyl)‐tris(propyl)‐cyclotricatechylene ( L1 ) and (±)‐tris(4‐pyridyl‐4‐benzoxy)‐tris(propyl)‐cyclotricatechylene ( L2 ) self‐assemble with PdII into [Pd6L8]12+ metallo‐cages that resemble a stella octangula. The self‐assembly of the [Pd6( L1 )8]12+ cage is solvent‐dependent; broad NMR resonances and a disordered crystal structure indicate no chiral self‐sorting of the ligand enantiomers in DMSO solution, but sharp NMR resonances occur in MeCN or MeNO2. The [Pd6( L1 )8]12+ cage is observed to be less favourable in the presence of additional ligand, than is its counterpart, where L=(±)‐tris(isonicotinoyl)cyclotriguaiacylene ( L1 a ). The stoichiometry of reactant mixtures and chemical triggers can be used to control formation of mixtures of homoleptic or heteroleptic [Pd6L8]12+ metallo‐cages where L= L1 and L1 a .  相似文献   

13.
A simple self‐assembled [Pd2 L 4] coordination cage consisting of four carbazole‐based ligands was found to dimerize into the interpenetrated double cage [3 X@Pd4 L 8] upon the addition of 1.5 equivalents of halide anions (X=Cl?, Br?). The halide anions serve as templates, as they are sandwiched by four PdII cations and occupy the three pockets of the entangled cage structure. The subsequent addition of larger amounts of the same halide triggers another structural conversion, now yielding a triply catenated link structure in which each PdII node is trans‐coordinated by two pyridine donors and two halide ligands. This simple system demonstrates how molecular complexity can increase upon a gradual change of the relative concentrations of reaction partners that are able to serve different structural roles.  相似文献   

14.
The reaction of dichlorido(cod)palladium(II) (cod = 1,5‐cyclooctadiene) with 2‐(benzylsulfanyl)aniline followed by heating in N,N‐dimethylformamide (DMF) produces the linear trinuclear Pd3 complex bis(μ2‐1,3‐benzothiazole‐2‐thiolato)bis[μ2‐2‐(benzylsulfanyl)anilinido]dichloridotripalladium(II) N,N‐dimethylformamide disolvate, [Pd3(C7H4NS2)2(C13H12NS)2Cl2]·2C3H7NO. The molecule has symmetry and a Pd...Pd separation of 3.2012 (4) Å. The outer PdII atoms have a square‐planar geometry formed by an N,S‐chelating 2‐(benzylsulfanyl)anilinide ligand, a chloride ligand and the thiolate S atom of a bridging 1,3‐benzothiazole‐2‐thiolate ligand, while the central PdII core shows an all N‐coordinated square‐planar geometry. The geometry is perfectly planar within the PdN4 core and the N—Pd—N bond angles differ significantly [84.72 (15)° for the N atoms of ligands coordinated to the same outer Pd atom and 95.28 (15)° for the N atoms of ligands coordinated to different outer Pd atoms]. This trinuclear Pd3 complex is the first example of one in which 1,3‐benzothiazole‐2‐thiolate ligands are only N‐coordinated to one Pd centre. The 1,3‐benzothiazole‐2‐thiolate ligands were formed in situ from 2‐(benzylsulfanyl)aniline.  相似文献   

15.
Reductive metalation of [44]decaphyrin with [Pd2(dba)3] provided a Hückel aromatic [46]decaphyrin PdII complex, which was readily oxidized upon treatment with DDQ to produce a Hückel antiaromatic [44]decaphyrin PdII complex. In CH2Cl2 solution the latter complex underwent slow tautomerization to a Möbius aromatic [44]decaphyrin PdII complex which exists as a mixture of conformers in dynamic equilibrium. To the best of our knowledge, these three PdII complexes represent the largest Hückel aromatic, Hückel antiaromatic, and Möbius aromatic complexes to date.  相似文献   

16.
Reductive metalation of [44]decaphyrin with [Pd2(dba)3] provided a Hückel aromatic [46]decaphyrin PdII complex, which was readily oxidized upon treatment with DDQ to produce a Hückel antiaromatic [44]decaphyrin PdII complex. In CH2Cl2 solution the latter complex underwent slow tautomerization to a Möbius aromatic [44]decaphyrin PdII complex which exists as a mixture of conformers in dynamic equilibrium. To the best of our knowledge, these three PdII complexes represent the largest Hückel aromatic, Hückel antiaromatic, and Möbius aromatic complexes to date.  相似文献   

17.
A series of new heteroleptic MN2S2 transition metal complexes with M = Cu2+ for EPR measurements and as diamagnetic hosts Ni2+, Zn2+, and Pd2+ were synthesized and characterized. The ligands are N2 = 4, 4′‐bis(tert‐butyl)‐2, 2′‐bipyridine (tBu2bpy) and S2 =1, 2‐dithiooxalate, (dto), 1, 2‐dithiosquarate, (dtsq), maleonitrile‐1, 2‐dithiolate, or 1, 2‐dicyanoethene‐1, 2‐dithiolate, (mnt). The CuII complexes were studied by EPR in solution and as powders, diamagnetically diluted in the isostructural planar [NiII(tBu2bpy)(S2)] or[PdII(tBu2bpy)(S2)] as well as in tetrahedrally coordinated[ZnII(tBu2bpy)(S2)] host structures to put steric stress on the coordination geometry of the central CuN2S2 unit. The spin density contributions for different geometries calculated from experimental parameters are compared with the electronic situation in the frontier orbital, namely in the semi‐occupied molecular orbital (SOMO) of the copper complex, derived from quantum chemical calculations on different levels (EHT and DFT). One of the hosts, [NiII(tBu2bpy)(mnt)], is characterized by X‐ray structure analysis to prove the coordination geometry. The complex crystallizes in a square‐planar coordination mode in the monoclinic space group P21/a with Z = 4 and the unit cell parameters a = 10.4508(10) Å, b = 18.266(2) Å, c = 12.6566(12) Å, β = 112.095(7)°. Oxidation and reductions potentials of one of the host complexes, [Ni(tBu2bpy)(mnt)], were obtained by cyclovoltammetric measurements.  相似文献   

18.
The study of palladium(IV) species has great implications for PdII/PdIV‐mediated catalysis. However, most of the PdIV complexes rapidly decompose under ambient conditions, which makes the isolation, characterization and further reactivity study very challenging. The reported ancillary ligand platforms to stabilize PdIV species are dominated by chelating N‐donors such as bipyridines. In this work, we present two PdIV complexes with scarcely used C‐donors as the supporting platform. The anionic aryl donor and MIC (MIC=mesoionic carbene) are combined in a [CC′C]‐type pincer framework to access a series of ambient‐stable PdIV tris(halido) complexes. Their synthesis, solid‐state structures, stability, and reactivity are presented. To the best of our knowledge, the work presented herein reports the first isolated PdIV–MIC as well as the first PdIV carbene‐based aryl pincer.  相似文献   

19.
A CoII/porphyrinate‐based macrocycle in the presence of a 3,5‐diphenylpyridine axial ligand functions as an endotopic ligand to direct the assembly of [2]rotaxanes from diazo and styrene half‐threads, by radical‐carbene‐transfer reactions, in excellent 95 % yield. The method reported herein applies the active‐metal‐template strategy to include radical‐type activation of ligands by the metal‐template ion during the organometallic process which ultimately yields the mechanical bond. A careful quantitative analysis of the product distribution afforded from the rotaxane self‐assembly reaction shows that the CoII/porphyrinate subunit is still active after formation of the mechanical bond and, upon coordination of an additional diazo half‐thread derivative, promotes a novel intercomponent C?H insertion reaction to yield a new rotaxane‐like species. This unexpected intercomponent C?H insertion illustrates the distinct reactivity brought to the CoII/porphyrinate catalyst by the mechanical bond.  相似文献   

20.
The molecular structure of the benzimidazol‐2‐ylidene–PdCl2–pyridine‐type PEPPSI (pyridine‐enhanced precatalyst, preparation, stabilization and initiation) complex {1,3‐bis[2‐(diisopropylamino)ethyl]benzimidazol‐2‐ylidene‐κC2}dichlorido(pyridine‐κN)palladium(II), [PdCl2(C5H5N)(C23H40N4)], has been characterized by elemental analysis, IR and NMR spectroscopy, and natural bond orbital (NBO) and charge decomposition analysis (CDA). Cambridge Structural Database (CSD) searches were used to understand the structural characteristics of the PEPPSI complexes in comparison with the usual N‐heterocyclic carbene (NHC) complexes. The presence of weak C—H…Cl‐type hydrogen‐bond and π–π stacking interactions between benzene rings were verified using NCI plots and Hirshfeld surface analysis. The preferred method in the CDA of PEPPSI complexes is to separate their geometries into only two fragments, i.e. the bulky NHC ligand and the remaining fragment. In this study, the geometry of the PEPPSI complex is separated into five fragments, namely benzimidazol‐2‐ylidene (Bimy), two chlorides, pyridine (Py) and the PdII ion. Thus, the individual roles of the Pd atom and the Py ligand in the donation and back‐donation mechanisms have been clearly revealed. The NHC ligand in the PEPPSI complex in this study acts as a strong σ‐donor with a considerable amount of π‐back‐donation from Pd to Ccarbene. The electron‐poor character of PdII is supported by π‐back‐donation from the Pd centre and the weakness of the Pd—N(Py) bond. According to CSD searches, Bimy ligands in PEPPSI complexes have a stronger σ‐donating ability than imidazol‐2‐ylidene ligands in PEPPSI complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号