首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this work, we have theoretically studied the changes in electrical properties of three different geometrical structures of carbon nanotubes upon co-doping them with boron and nitrogen atoms. We applied different doping mechanisms to study band structure variations in the doped structures. Doping carbon nanotubes with different atoms will create new band levels in the band structure and as a consequence, a shift in the Fermi level occurs. Whereas, filling up the lowest conduction/ upper valence bands created an up/ downshift in the Fermi level. Moreover, dopants concentration and dopants position play a critical rule in defining the number of new band levels. These new band levels in the band gap region represented as new peaks appeared in the density of states. These new bands are solely attributed to co-doping carbon nanotubes with boron and nitrogen atoms.  相似文献   

2.
We investigate the field emission properties of nitrogenated and boronated carbon nanotubes using time-dependent density functional theory, where the wave function propagation is performed using the Crank–Nicholson algorithm. We extract the current–voltage characteristics of the emitted electrons from nanotubes with different doping configurations. We found that boron doping alone either impedes, or slightly enhances, field emission. Nitrogen generally enhances the emission current, and the current is sensitive to the location of the nitrogen dopant in the nanotube. Doping with both nitrogen and boron will generally enhance emission, and the closer the nitrogen dopant is to the tip, the higher is the emitted current. The emitted charge cloud from nitrogen-doped carbon nanotubes, however, diffuse more than that from pristine ones, our simulations show the emergence of a branching structure from the charge cloud, which suggests that nitrogenated carbon nanotubes are less convenient for use in precision beam applications.  相似文献   

3.
First-principles calculations based on density functional theory were performed to study the structural and electronic properties of sulphur substitution-doped boron nitride (BN) nanotubes, using the theory as implemented in SIESTA code, which uses non-conserving pseudo-potentials in fully non-local form and atomic orbitals as the basis set. The generalized gradient approximation (GGA) was used for the exchange–correlation (XC) potential. The tube selected was a (10, 0) BN nanotube that fell in the range of energy gap independent of the tube diameter. The electronic and structural properties for sulphur substitution in the boron and the nitrogen sites were studied. The structural arrangement in equilibrium conditions for S shows an outward radial deformation around the sulphur atom in the tube. The bandgap of the pristine BN nanotubes was found to be significantly modified on doping.  相似文献   

4.
We investigate the structures and properties of boron/nitrogen co-doped carbon nanotube with water molecules adsorbing. The electronic and optical properties of the systems are calculated by using the first-principles theory in detail. The results reveal that the doped nanotubes show hydrophilic behavior when the oxygen atoms are close to the nanotubes. The Mulliken charges redistribute and transfer between the doped carbon nanotubes and the water molecules. The band gaps of the nanotubes vary with the positions of H2O. The positions and intensities of the reflectivity peaks are affected by the distributions of boron/nitrogen atoms and the positions of water molecules. The investigations are beneficial to further biological applications of co-doped nanotubes.  相似文献   

5.
A theoretical study of the functionalization of some single-walled carbon nanotubes (SWCNT) is presented using density functional theory. The pristine SWCNT consists of a finite, open (5, 5) nanotube with all the dangling bonds at the tips saturated with hydrogen. The structural and electronic properties of the pristine tube, with formula C80H20, are compared to those of a SWCNT with a vacancy defect at the sidewall, providing insight into the reactivity induced by the presence of those defects. The nanotubes were functionalized with some organic molecules: (a) formic acid, as a model carboxylic acid, (b) aminotriethylene glycol, as a model amide, and (c) ethylenglycol, as a model of the corresponding polymer. We study the effects of functionalization on both the pristine SWCNT and the SWCNT with a vacancy at the wall. Structures and electronic properties (dipole moments, ionization potentials, electron affinities, electronegativities, chemical hardnesses and HOMO-LUMO gaps) of both pristine and functionalized nanotubes are calculated, as well as the charge transfer and the binding energies of the organic radicals to the nanotubes. Binding to defects is thermodynamically favorable. The electrical dipole moments increase with the functionalization, and this enhances the solubility of the nanotubes in water, as shown by the favorable changes in the free energies of solvation. This should improve the biocompatibility of the nanotubes and lower their toxicity.  相似文献   

6.
We investigated the interactions between two different geometrical configurations of single-walled carbon nanotubes and boron atoms using first-principle calculations within the framework of the density functional theory. With the aid of ab initio calculations, we introduced a new type of toxic gas sensor that can detect the presence of CO, NO and H2 molecules. We proved that the dopant concentration on the surface of the nanotube plays a crucial role in the sensitivity of this device. Furthermore, we showed that small concentrations of dopants can modify the transport and electronic properties of the single-walled carbon nanotube and can lend metallic properties to the nanotube. Band-gap narrowing occurs when the nanotube is doped with boron atoms. The emerged new energy level near the Fermi level upon boron doping clearly indicates the coupling between the p orbital of the boron atom and the large p bond of the carbon nanotube. We also predicted a weak hybridization between the boron atoms and the nanotube for the valence-band edge states; this weak coupling leads to conducting states around the band gap.  相似文献   

7.
We reported a simple method to fabricate polymer nanocomposites with single-walled carbon nanotubes (SWNTs) having exceptional alignment and improved mechanical properties. The composite films were fabricated by casting a suspension of single walled carbon nanotubes in a solution of thermoplastic polyurethane and tetrahydrofuran. The orientation as well as dispersion of nanotubes was determined by scanning electron microscopy, transmission electron microscopy and polarized Raman spectroscopy. The macroscopic alignment probably results from solvent-polymer interaction induced orientation of soft segment chain during swelling and moisture curing. The tensile behavior of the aligned nanotube composite film was also studied. At a 0.5 wt.% nanotube loading, a 1.9-fold increase in Young's modulus was achieved.  相似文献   

8.
We studied the stability, geometrical structures and electronic energy band of hexagonal silicon nanotube (SiNT) confined inside carbon nanotubes based on first-principle calculations. The results show that the encapsulating process of SiNT is exothermic in (9,9) carbon nanotube while endothermic in (8,8) and (7,7) carbon nanotubes. When the SiNT is inserted into (9,9) carbon nanotube, the insertion energy is about 0.09 eV. Energy band of SiNT@(9,9) nanotube is not distorted greatly compared with the superposition of bands of isolated SiNT and (9,9) carbon nanotube. Especially, a parabolic band occurs near the Fermi level of energy band in SiNT@(7,7) nanotube. Such a band could be a nearly free electronic state originating from carbon nanotube. Moreover, we discuss the variation of total energy as the SiNT rotates around its axis inside carbon nanotubes.  相似文献   

9.
Carbon nanotubes (CNTs) possess extremely high mechanical properties and could be the ultimate reinforcing materials for the development of nanocomposites. In this work, a Finite Element (FE) model based on the molecular mechanics theory was developed to evaluate tensile properties of single-walled carbon nanotubes (SWCNTs). The deformation and fracture of carbon nanotubes under tensile strain conditions were studied by common FE software, Ansys. In this model, individual carbon nanotube was simulated as a frame-like structure, and the primary bonds between two nearest-neighboring atoms were treated as beam elements. The beam element properties were determined via the concept of energy equivalence between molecular dynamics and structural mechanics. So far, several researches have studied the elastic behavior of CNTs, and its nonlinearity is not well understood. The novelty of the model lies on the use of nonlinear beam elements to evaluate SWNTs tensile failure. The obtained calculated mechanical properties show good agreement with existing numerical and experimental results.  相似文献   

10.
An electromechanical system is constructed to explore the electrical properties of various types of suspended single-walled carbon nanotubes under the influence of tensile stretching. Small band-gap semiconducting (or quasimetallic) nanotubes exhibit the largest resistance changes and piezoresistive gauge factors ( approximately 600 to 1000) under axial strains. Metallic nanotubes exhibit much weaker but nonzero sensitivity. Comparison between experiments and theoretical predictions and potential applications of nanotube electromechanical systems for physical sensors (e.g., strain gauges, pressure sensors, etc.) are discussed.  相似文献   

11.
We have investigated the electrical transport properties of carbon nanotube field-effect transistors as a function of channel length, gate dielectric film thickness, and dielectric material. Our experiments show that the bulk properties of the semiconducting carbon nanotubes do not limit the current flow through the metal/nanotube/metal system. Instead, our results can be understood in the framework of gate and source-drain field induced modulation of the nanotube band structure at the source contact. The existence of one-dimensional Schottky barriers at the metal/nanotube interface determines the device performance and results in an unexpected scaling behavior.  相似文献   

12.
We have carried out electrical conductivity studies on a single-walled carbon nanotubes dispersed lyotropic liquid crystal consisting of 50 wt.% TX-100 in water as a function of magnetic field and temperature. This system exhibits hexagonal and isotropic phases on heating. For all the applied magnetic fields, the temperature dependence of electrical conductivity of the carbon nanotubes dispersed lyotropic liquid crystal system exhibits a discontinuous change at the hexagonal to isotropic transition temperature. We find that the magnetic field dependence of the hexagonal to isotropic transition temperature is similar to that of the viscosity of the system. Using photo images of the sample, we find that the carbon nanotubes in the lyotropic liquid crystal form magnetic field dependent aggregates. We find spherical, rod and hook-like nanotube aggregates for low and high applied magnetic fields respectively. These nanotube aggregates alter the viscosity of our system which in turn alters the transition temperatures.  相似文献   

13.
解研  罗莹  刘绍军 《物理学报》2008,57(7):4364-4370
通过第一性原理计算研究了垂直于碳纳米管轴向的单向压力对碳纳米管(6,6)晶体电子结构特性的影响.计算研究发现:由碳纳米管(6,6)组成的四方结构晶体(t相)具有金属特性,电子可以沿碳纳米管管壁运动;在单向压力作用下,t相发生结构相变形成非成键相,随着压力的进一步增大,碳纳米管间产生键合,形成了成键相;单向压力对碳纳米管(6,6)晶体的能带结构影响主要表现在π能带和π*能带,伴随着单向压力的增加,碳纳米管晶体的电学性质经历从金属到半导体再到活泼金属的转变;非成键相的电子被局域在碳纳米管附近使晶体具有半导体特性,而成键相的电子不仅可以沿着碳纳米管管壁运动,还可以在碳纳米管之间(即成键方向)运动,从而使成健相晶体具有活泼的金属特性. 关键词: 碳纳米管晶体 第一性原理计算 金属—半导体转变  相似文献   

14.
杨剑群  李兴冀  马国亮  刘超铭  邹梦楠 《物理学报》2015,64(13):136401-136401
碳纳米管具有优异的导电性, 是未来电子元器件的理想候选材料, 应用前景广阔. 针对碳纳米管在空间电子元器件的应用需求, 本文研究了170 keV质子辐照对多壁碳纳米管薄膜微观结构与导电性能的影响. 采用扫描电子显微镜(SEM)、拉曼光谱仪(Raman)、X射线光电子能谱仪(XPS)及电子顺磁共振谱仪(EPR)对辐照前后碳纳米管试样的表面形貌和微观结构进行分析; 利用四探针测试仪对碳纳米管薄膜进行导电性能分析. SEM分析表明, 170 keV质子辐照条件下, 当辐照注量高于5×1015 p/cm2 (protons/cm2)时, 碳纳米管薄膜表面变得粗糙疏松, 纳米管发生明显弯曲、收缩及相互缠结现象. 目前, 质子辐照纳米管发生的收缩现象被首次发现. 基于Raman和XPS分析表明, 170 keV质子辐照后碳纳米管的有序结构得到改善, 且随辐照注量增加, 碳纳米管的有序结构改善明显. 结构的改善主要是由于170 keV质子辐照碳纳米管所产生的位移效应导致缺陷重组. EPR分析表明, 随着辐照注量的增加, 碳纳米管薄膜内的非局域化电子减少. 利用四探针测试分析表明, 碳纳米管薄膜的导电性能变差, 这是由于170 keV质子辐照导致碳纳米管薄膜中的电子特性及形态发生改变. 本文研究结果有助于利用质子辐照对碳纳米管膜结构和性能进行调整, 从而制备出抗辐射的纳米电子器件.  相似文献   

15.
The structural and electronic properties of boron and nitrogen atom substitutional doping in (8,0)@(13,0) (semiconductor@semiconductor) and (6,0)@(13,0) (metallic@semiconductor) double walled carbon nanotubes, were obtained by using the first-principle calculations based on the density functional theory. In this framework, the electronic density plays a central role and it was obtained from a self-consistent field form. When boron or nitrogen substitutes a carbon atom the structure remains practically the same with negligible deformation observed around defects in all configurations considered. The electronic band structure results indicate that the boron doped systems behave as a p-type impurity, however, the nitrogen doped systems behave as an n-type impurity. In all the systems investigated here, we found that, in the cases of semiconductor@semiconductor tubes, they were the easiest to incorporate a B atom in the outer-wall and an N atom in the inner-wall of the nanotube.  相似文献   

16.
Thanks to their excellent mechanical properties as well as interesting electrical characteristics, carbon nanotubes are among the most widely used materials for the study of electromechanical properties. This review paper presents the physical properties and the potential applications of carbon nanotube based nanoelectromechanical devices. We present an overview of fabrication methods followed by a discussion of the physical properties of CNT-NEMS. Finally some potential applications are discussed.  相似文献   

17.
The effect of boron nitride (BN) doping on electronic properties of armchair double-walled carbon and hetero-nanotubes is studied using ab initio molecular dynamics method. The armchair double-walled hetero-nanotubes are predicted to be semiconductor and their electronic structures depend strongly on the electronic properties of the single-walled carbon nanotube. It is found that electronic structures of BN-doped double-walled hetero-nanotubes are intermediate between those of double-walled boron nitride nanotubes and double-walled carbon and boron nitride hetero-nanotubes. Increasing the amount of doping leads to a stronger intertube interaction and also increases the energy gap.  相似文献   

18.
Using spin-polarised density functional theory calculation single-walled carbon nanotube (SWCNT) whose sidewall is functionalised with nickel cluster is studied for its possible application in CO molecule sensing. We have chosen (6,0) SWCNT functionalised with Ni13 cluster as the model for nanotube-cluster system. Changes in the properties of nanotube-cluster system brought by the CO molecule are reported. The CO molecule binding is energetically more favourable to the nanotube-cluster system than the pristine nanotube. The electronic properties are investigated in terms of density of states and bandstructure calculations. Pristine carbon nanotubes are intrinsically non-magnetic but nanotubes functionalised with nickel cluster are observed to have a huge magnetic moment which reduced on adsorbing CO molecule. The change in magnetisation upon CO adsorption may be detected using a suitable magnetometer. This result suggests the possibility of using carbon nanotube-cluster system to detect CO molecules. Bader charge analysis shows that CO molecule withdraws electronic charge from the cluster atoms. Nature of chemical bonding is studied with crystal orbital Hamilton population (–COHP) analysis.  相似文献   

19.
曾强  张晨利 《物理学报》2018,67(24):246101-246101
采用分子动力学方法模拟了氮化硼纳米管在轴压和扭转复合荷载作用下的屈曲和后屈曲行为.在各加载比例下,给出了初始线性变形阶段和后屈曲阶段原子间相互作用力的变化,确定了屈曲临界荷载关系.通过对屈曲模态的细致研究,从微观变形机理上分析了纳米管对不同外荷载力学响应的差异.研究结果表明,扶手型和锯齿型纳米管均呈现出非线性的屈曲临界荷载关系,复合加载下的屈曲行为具有强烈的尺寸依赖性.温度升高将导致屈曲临界荷载的下降,且温度的影响随加载比例的变化而变化.无论在简单加载或复合加载中,同尺寸的碳纳米管均比氮化硼纳米管具有更强地抵抗屈曲荷载的能力.  相似文献   

20.
We report on the first direct observation of a transition from a Tomonaga-Luttinger liquid to a Fermi-liquid behavior in potassium-intercalated mats of single-wall carbon nanotubes. Using high resolution photoemission spectroscopy, an analysis of the spectral shape near the Fermi level reveals a Tomonaga-Luttinger liquid power law scaling in the density of states for the pristine sample and for low dopant concentration. As soon as the doping is high enough to achieve a filling of the conduction bands of the semiconducting tubes, a distinct transition to metallic single-wall carbon nanotube bundles with the scaling behavior of a normal Fermi liquid occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号