首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, we develop a theory of thermoelectric transport properties in two-dimensional semiconducting quantum well structures. Calculations are performed for n-type 0.1 wt.% CuBr-doped Bi2Se3/Bi2Te3/Bi2Se3 and p-type 3 wt.% Te-doped Sb2Te3/Bi2Te3/Sb2Te3 quantum well systems in the temperature range 50–600 K. It is found that reducing the well thickness has a pronounced effect on enhancing the thermoelectric figure of merit (ZT). For the n-type Bi2Se3/Bi2Te3/Bi2Se3 with 7 nm well width, the maximum value of ZT is estimated to be 0.97 at 350 K and for the p-type Sb2Te3/Bi2Te3/Sb2Te3 with well width 10 nm the highest value of the ZT is found to be 1.945 at 440 K. An explanation is provided for the resulting higher ZT value of the p-type system compared to the n-type system.  相似文献   

2.
The ab initio calculations of the electronic structure in the bulk and at the (0001) surface of narrow-band Bi2Se3, Sb2Te3, Sb2STe3, and Sb2SeTe2 semiconductors have been performed. It has been shown that ternary compounds Sb2STe2 and Sb2SeTe2, as well as the previously known compounds Bi2Se3 and Sb2Te3, are three-dimensional topological insulators. The influence of the subsurface van der Waals gap expansion on the surface electronic structure of these compounds has been analyzed. It has been shown that this expansion leads to the formation of new (trivial) surface states, namely a parabolic state in the conduction band and an M-shaped state in the valence band. These results explain the phenomena discovered recently in photoemission experiments and reveal the nature of new states that are caused by the adsorption of atoms on the surfaces of the layered topological insulators.  相似文献   

3.
A study is reported on the thermoelectric properties of n-type solid solutions Bi2Te3?y Sey (y=0.12, 0.3, 0.36), Bi2?x SbxTe3?y Sey (x=0.08, 0.12; y=0.24, 0.36), and Bi2Te3?z Sz (z=0.12, 0.21) as functions of carrier concentration within the 80-to 300-K range. It has been established that the highest thermoelectric efficiency Z is observed in the Bi2Te3?y Sey (y=0.3) solid solution containing excess Te at optimum carrier concentrations (0.35×1019 cm?3) and at temperatures from 80 to 250 K. The increase in Z in the Bi2Te3?y Sey solid solution compared with Bi2?x SbxTe3?y Sey and Bi2Te3?z Sz is accounted for by the high mobility μ0, an increase in the effective mass m/m 0 with decreasing temperature, the low lattice heat conductivity κL, and the weak anisotropy of the constant-energy surface in a model assuming isotropic carrier scattering.  相似文献   

4.
We report on the single crystal growth and thermoelectric and magnetic properties of Mn-doped Bi2Se3 and Sb2Se3 single crystals prepared by the temperature gradient solidification method. The composition and crystal structure were determined using electron probe microanalysis and θ–2θ powder X-ray diffraction studies, respectively. The lattice constants of several percent Mn-doped Bi2Se3 and Sb2Se3 were slightly smaller than those of the undoped sample due to the smaller Mn atomic radius (1.40 Å) than those of Bi (1.60 Å) and Sb (1.45 Å). Mn-doped Bi2Se3 and Sb2Se3 showed spin-glass and paramagnetic properties, respectively.  相似文献   

5.
The electrochemical reduction processes on stainless-steel substrates from an aqueous electrolyte composed of nitric acid, Bi3+, HTeO2+, SbO+ and H2SeO3 systems were investigated using cyclic voltammetry. The thin films with a stoichiometry of Bi2Te3, Bi0.5Sb1.5Te3 and Bi2Te2.7Se0.3 have been prepared by electrochemical deposition at selected potentials. The structure, composition, and morphology of the films were studied by X-ray diffraction (XRD), environmental scanning electron microscopy (ESEM) and electron microprobe analysis (EMPA). The results showed that the films were single phase with the rhombohedral Bi2Te3 structure. The morphology and growth orientation of the films were dependent on the deposition potentials.  相似文献   

6.
The results of the theoretical investigation of the surface electronic structure of A2VB3VI compounds containing topologically protected surface states are reported. The ideal Bi2Te3, Bi2Se3, and Sb2Te3 surfaces and surfaces with an absent external layer of chalcogen atoms, which were observed experimentally as monolayer terraces, have been considered. It has been shown that the discrepancy between the calculated Fermi level and the value measured in the photoemission experiments can be attributed to the presence of the “dangling bond” states on the surface of the terraces formed by semimetal atoms. The fraction of such terraces on the surface has been estimated.  相似文献   

7.
The effect of an ultrathin Pb film deposited on the surface of Bi2Se3 and Sb2Te3 compounds on the electronic state structure of topological insulators is studied experimentally by the angle-resolved photoemission spectroscopy (ARPES) technique. The following features are revealed: formation of two-dimensional quantum-well states in the near-surface region, an increase in the binding energy of the Dirac cone and the core levels, and a simultaneous electronic states intensity redistribution in the system in photoemission spectra. The results obtained show that topological states may coexist at the interface between studied materials and a superconductor, which seems to be promising for application in quantum computers.  相似文献   

8.
Antimony selenide is considering as an emerging photovoltaic solar cell absorber. In this paper, Solar Cell Capacitance Simulator in 1 Dimension (SCAPS-1D) is used to investigate the possibility of realizing ultrathin Sb2Se3-based solar cells. The comparison of the current-voltage characteristic and output performances simulation results of CdS/Sb2Se3 solar cells with and without HTL are in agreement with the experimental results. In the first step, by considering the cell without HTL, the best PCE of 5.29% is obtained with WS2 buffer layer. Thereafter, we simulated the impact of the charge carriers diffusion length and the doping concentration on the output performances. By combining a high quality absorber and doping concentration in the order of 1015 cm−3, Sb2Se3 solar cell achieves high PCE above 10%. Secondly, we introduced a HTL between the absorber layer and back metal contact, which led to n-i-p configuration. This configuration with CZ-TA HTL shows a best PCE of 6.29%. For a high quality absorber, Sb2Se3-based solar cell achieves best PCE of 11.10% and better stability for a thickness of 250 nm and doping concentration of 1014 cm−3 of the Sb2Se3 absorber layer. Our numerical solar cell design provides an approach to further improve the efficiency of Sb2Se3-based solar cells.  相似文献   

9.
A method for fabricating and the results of an investigation of SnO2-As2(Se0.9Te0.1)3 and SnO2-(As0.67Sb0.33)2Se3 heterojunctions are described. The spectral and current-voltage characteristics of the heterojunctions obtained are presented. Zh. Tekh. Fiz. 68, 55–57 (October 1998)  相似文献   

10.
The dispersion of the band-gap edge states in bulk topological insulators Bi2Te3 and Bi2Se3 is considered within density functional theory. The dependences of this dispersion both on the approximation used for an exchange-correlation functional at fixed unit cell parameters and atomic positions and on these parameters and positions that are obtained upon structural relaxation performed using a certain approximated functional are analyzed. The relative position of the Dirac point of topologically protected surface states and the valence band maximum in the surface electronic structure of the topological insulators is discussed.  相似文献   

11.
Thin films of Sb, Se and Sb2Se3 are deposited onto glass and irradiated by a cw-Ar+ laser beam. The kinetics of crystallization and oxidation are traced via the time dependence of optical reflectivity and temperature, T, of the irradiated zone. For Sb2Se3, transformations start abruptly when T attains a critical value, T c, independently of the laser beam power. These T c values are comparable to the ones observed under furnace annealing conditions.  相似文献   

12.
Based on first-principles calculations within density functional theory, we studied the effects of Cr adsorption on the electronic and magnetic properties of Bi2Se3 topological insulators employing spin–orbit coupling (SOC) self-consistently. Cr atom induces a spin-polarization with total net magnetic moments of 2.157 μB (spin up). There is a p-d hybridization between the Cr 3d states and the nearest neighbor Se 4p states. A peak of density of states appears at Fermi level. The electronic structures change and the energy levels split near the Fermi level. No gap opening has been found at the Dirac point of the surface state from the bottom surface.  相似文献   

13.
《Current Applied Physics》2020,20(2):282-287
Thin-film solar cells have attracted worldwide attention due to their high efficiency and low cost. Antimony selenide (Sb2Se3) is a promising light absorption material candidate for thin-film solar cells due to its suitable band gap, abundance, low toxicity, and high chemical stability. Herein, we fabricate an Sb2Se3 thin film solar cell using a simple hydrazine solution process. By controlling the thickness of the photoactive layer and inserting a poly(3-hexylthiophene) hole-transporting layer, an Sb2Se3 solar cell with a power conversion efficiency of 2.45% was achieved.  相似文献   

14.
Sm3+ doped Sb2Se3 nanorods were synthesized by the co-reduction method at 180 °C and pH=12 for 48 h. Powder XRD patterns indicate that the SmxSb2−xSe3 crystals (x=0.00-0.05) are isostructural with Sb2Se3. The cell parameters increase for Sm3+ upon increasing the dopant content (x). SEM images show that doping of Sm3+ ions in the lattice of Sb2Se3 results in nanorods. High-resolution transmission electron microscopic (HRTEM) studies reveal that the Sm0.05Sb1.95Se3 is oriented in the [1 0 −1] growth direction. UV-vis absorption reveals mainly electronic transitions of the Sm3+ ions in doped nanomaterials. Emission spectra of doped materials, in addition to the characteristic red emission peaks of Sb2Se3, show other emission bands originating from f-f transitions of the Sm3+ ions. The electrical conductance of Sm-doped Sb2Se3 is higher than undoped Sb2Se3 and increase with temperature.  相似文献   

15.
V–VI (Bi2Se3, Bi2Te3, Sb2Se3, and Sb2Te3) semiconductors nanorods with the diameters of 40–90 nm have been synthesized starting from BiCl3 (or SbCl3) and Na2SeO3 (or Na2TeO3) by using NaH2PO2·H2O as the reduced agent at 140°C for 24 h. The samples were characterized by XRD, SEM and TEM. XPS spectra of the products show the obtained samples are close to stoichiometry. The hydrolysate of the starting materials could be served as the precursor and sharply decreases the growth of the samples; a possible hydrolyzation–reduction–crystallization process was also proposed to explore the formation mechanism of these nanorods.  相似文献   

16.
The inertness of the cleaved (0001) surface of a Bi2Se3 single crystal to oxidation has been demonstrated using X-ray photoelectron spectroscopy, as well as atomic-force and scanning tunneling microscopy and spectroscopy. No intrinsic bismuth and selenium oxides are formed on the surface after a month of storage in air. Atomically flat surfaces with macroscopic sizes (∼1 cm2) and rms roughness less than 0.1 nm have been prepared, and (1 × 1)-(0001) Bi2Se3 atomic structure has been resolved. The tunneling conductance measurements have shown that the energy dependence of the surface density of states is quasilinear in the band gap of Bi2Se3.  相似文献   

17.
The photoemission energy distribution curves (EDC's) of crystalline and amorphous Sb2Se3 were measured in the photon energy range hv=7 to 20 eV using polarized radiation from a synchroton storage ring. The EDC's show that the six electrons per Sb2Se3 molecule, attributed primarily to the selenium p-pairs, are clearly separated from the remaining part of the valence band of crystalline Sb2Se3. The optical transitions from these states occur with matrix elements strongly dependent on the orientation of the electrical vector of the polarized radiation as a result of crystal field effects. Model densities of states are constructed for both crystalline and amorphous Sb2Se3.  相似文献   

18.
This work considers the effect of vacuum annealing on the thermoelectric properties of Sb0.9Bi1.1Te2.9Se0.1 thin film and Sb0.9Bi1.1Te2.9Se0.1–C composites with various carbon contents produced by ion-beam deposition in an argon atmosphere. The electrical resistivity and the thermopower of Sb0.9Bi1.1Te2.9Se0.1–C nanocomposites are found to be dependent on not only the carbon concentration but also the type and the concentration of intrinsic point defects of the Sb0.9Bi1.1Te2.9Se0.1 solid solution, which determine the type of conductivity of Sb0.9Bi1.1Te2.9Se0.1 granules. The power factors are estimated for films of Sb0.9Bi1.1Te2.9Se0.1 solid solution and films of Sb0.9Bi1.1Te2.9Se0.1–C composites and found to have values comparable with the values for nanostructured materials on the basis of (Bi,Sb)2(Te,Se)3 solid solutions.  相似文献   

19.
Polycrystalline samples of Bi2Se3 and stoichiometric ternary compounds in the quasi-binary system SnSe-Bi2Se3 were characterized by measurements of temperature and field dependence of electrical conductivity. The current density–electric field characteristics were found to be non-linear, especially when the applied electric field exceeds a certain value which is dependent on the temperature T. Furthermore, the electrical conductivity can be enhanced by the applied electric field. The characteristic length a(T) seemed to be enhanced with increasing temperature. Electrical conductivity measurements elucidated the semiconducting behaviour of both compounds, especially when the temperature of measurement exceeds a certain value for SnBi4Se7, and hopping and band type conduction are dominant at low and high ranges of temperature, respectively. Below 200 K, the electrical conductivity of SnBi4Se7 decreases with increasing temperature. Meanwhile, additional scattering and hopping seemed to characterize the behaviour of SnBi4Se7 due to the Sn doping of Bi2Se3 resulting in additional states at the Fermi level. PACS 72.20.-i; 72.15.-v  相似文献   

20.
Semiconducting Sb2Se3 thin films have been prepared onto the stainless steel and fluorine doped tin oxide coated glass substrates from non-aqueous media using an electrodeposition technique. The electrodeposition potentials for different bath compositions and concentrations of solution have been estimated from the polarization curves. SbCl3 and SeO2 in the volumetric proportion as 1:1 with their equimolar solution concentration of 0.05 M form good quality films. The films are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and optical absorption techniques. The SEM studies show that the film covers the total substrate surface with uneven surface morphology. The XRD patterns of the films obtained by varying compositions and concentrations show that the as-deposited films are polycrystalline with relatively higher grain size for 1:1 composition and 0.05 M concentration. The optical band gap energy for indirect transition in Sb2Se3 thin films is found to be 1.195 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号