首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA charge transfer chemistry has been subject of considerable interest with consequences in the formation of oxidative damage to the DNA which can result in mutagenesis or carcinogenesis. In this article, important examples of spectroscopical and biochemical assays are compared and discussed in terms of the effiencies, rates, and mechanisms. Coupled with the demonstration that such charge transfer can be modulated both negatively and positively by DNA‐binding proteins, these observations therefore suggest the intriguing possibility that DNA‐mediated charge transfer chemistry is biological relevant and may play a role in cellular processes. Additionally, charge transfer chemistry plays a growing role in the recent development of DNA chips detecting mutations or lesions of nucleic acids.  相似文献   

2.
3.
4.
5.
6.
The multiparametric nature of nanoparticle self‐assembly makes it challenging to circumvent the instabilities that lead to aggregation and achieve crystallization under extreme conditions. By using non‐base‐pairing DNA as a model ligand instead of the typical base‐pairing design for programmability, long‐range 2D DNA–gold nanoparticle crystals can be obtained at extremely high salt concentrations and in a divalent salt environment. The interparticle spacings in these 2D nanoparticle crystals can be engineered and further tuned based on an empirical model incorporating the parameters of ligand length and ionic strength.  相似文献   

7.
8.
We introduce the concept and operation of a binding‐induced DNA nanomachine that can be activated by proteins and nucleic acids. This new type of nanomachine harnesses specific target binding to trigger assembly of separate DNA components that are otherwise unable to spontaneously assemble. Three‐dimensional DNA tracks of high density are constructed on gold nanoparticles functionalized with hundreds of single‐stranded oligonucleotides and tens of an affinity ligand. A DNA swing arm, free in solution, is linked to a second affinity ligand. Binding of a target molecule to the two ligands brings the swing arm to AuNP and initiates autonomous, stepwise movement of the swing arm around the AuNP surface. The movement of the swing arm, powered by enzymatic cleavage of conjugated oligonucleotides, cleaves hundreds of oligonucleotides in response to a single binding event. We demonstrate three nanomachines that are specifically activated by streptavidin, platelet‐derived growth factor, and the Smallpox gene. Substituting the ligands enables the nanomachine to respond to other molecules. The new nanomachines have several unique and advantageous features over DNA nanomachines that rely on DNA self‐assembly.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
We describe the synthesis of the phosphoramidite building blocks of alpha-tricyclo-DNA (alpha-tc-DNA) covering all four natural bases, starting from the already known corresponding alpha-tc-nucleosides. These building blocks were used for the preparation of three alpha-tc-oligonucleotide 10-mers representing a homopurine, a homopyrimidine, and a mixed purine/pyrimidine base sequence. The base-pairing properties with complementary parallel and antiparallel oriented DNA and RNA were studied by UV-melting analysis and CD spectroscopy. We found that alpha-tc-DNA binds preferentially to parallel nucleic acid complements through Watson-Crick duplex formation, with a preference for RNA over DNA. In comparison with natural DNA, alpha-tc-DNA shows equal to enhanced affinity to RNA and also pairs to antiparallel DNA or RNA complements, although with much lower affinity. In the mixed-base sequence these antiparallel duplexes are of the reversed Watson-Crick type, while in the homopurine/homopyrimidine sequences Hoogsteen and/or reversed Hoogsteen pairing is observed. Antiparallel duplex formation of two alpha-tc-oligonucleotides was also observed, although the thermal stability of this duplex was surprisingly low. The base-pairing properties of alpha-tc-DNA are discussed in the context of alpha-DNA, alpha-RNA, and alpha-LNA.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号