首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The large dielectric dispersion of colloids in the low-frequency range, related to polarization of the particle surface electric layer (the alpha-relaxation), has been a subject of scientific interest for decades. In recent papers we advanced the idea that the process of particle surface polarization is partially detected by a second low-frequency relaxation displayed in the frequency domain of particle rotation. The aim of the present paper is to argument this view more consistently. The second low-frequency relaxation is as universal as alpha-relaxation and closely related to it. It is more sensitive to variations in particle electrophoretic mobility than the alpha-relaxation. The paper discusses several aspects concerning the phenomenon: the reasons for its difficult identification as a universal effect; the procedures helping its analysis; and the basic features and the origin of the phenomenon.  相似文献   

2.
赵孔双  雷建平  李缨 《化学学报》2001,59(9):1357-1362
对由SDS、CTAB、正庚烷、正丁醇和盐水组成的中相微乳体系进行了介电测量,在不同盐度下低频段出现显著的介弛豫现象,它给出了弛豫时间随盐度的变化关系。通过解析介电谱获得了体系内部结构和电性质等信息,几个介电模型和理论公式被用来解释解析的结果。对弛豫时间的计算结果发现,该弛豫是由多种极化机制参与、界面极化为支配的动力学过程。介电解析和模型计算相互验证,结果暗示着体系盐度变化对中相微乳结构变化的影响和可能的转化机制。  相似文献   

3.
Measurement of the dielectric permittivity of colloidal suspensions in the kilohertz frequency range (the so-called low-frequency dielectric dispersion) is a promising tool for the electrokinetic characterization of colloids. However, this technique is less used than would be desirable because of the difficulties associated with the measurements, the most important of which is the electrode polarization (EP). Recently (M. Wübbenhorst and J. Van Turnhout, Dielectrics Newsl. November (2000)) a method was proposed that appears capable of separating the unwanted electrode effects from the double-layer relaxation that we are interested in. The method, based on the logarithmic derivative of raw epsilon'(omega) data (epsilon'(omega) is the real part of the permittivity of the suspension for a frequency omega of the applied AC field), is first checked against the well-known theory of the AC permittivity of colloidal suspensions developed by DeLacey and White (E. H. B. DeLacey and L. R. White, J. Chem. Soc. Faraday Trans. 277, 2007 (1981)). We show that the derivative epsilon'(D)(omega)=-(pi/2)(partial differential epsilon'/partial differential ln omega) gives an excellent representation of the true imaginary part of the permittivity, epsilon'(omega). The technique is then applied to experimental data of the dielectric constant of polystyrene and ethylcellulose suspensions. We found that epsilon'(D) displays two separated behaviors when plotted against log omega in the frequency range 100 Hz-1 MHz: a monotonous decrease (associated with EP) followed by an absorption peak (associated with the double-layer relaxation, or alpha-relaxation). Interestingly, they are separated enough to make it possible to easily find the characteristic frequency of the alpha-relaxation. Fitting a relaxation function to epsilon'(D)(omega) after eliminating the part due to EP, we could calculate the real part epsilon'(omega) and compare it to the DeLacey and White (DW) theoretical predictions. A significantly better agreement between DW calculations and experimental epsilon'(omega) data is obtained when the logarithmic derivative method is used, as compared to the classical electrode-separation techniques.  相似文献   

4.
Dielectric relaxation spectra of CTAB reverse micellar solutions, CTAB/isooctane/n-hexanol/water systems with different concentrations of CTAB and different water contents, were investigated in the frequency range from 40 Hz to 110 MHz. Two striking dielectric relaxations were observed at about 10(4) Hz and 10(5) Hz, respectively. Dielectric parameters were obtained by fitting the data using the Cole-Cole equation with two Cole-Cole dispersion terms and the electrode polarization term. These parameters show different variation with the increase of the concentration of CTAB or the water content. In order to explain the two relaxations systematically and obtain detailed information on the systems and the inner surface of the reverse micelles, an electrical model has been constituted. On the basis of this model, the low-frequency dielectric relaxation was interpreted by the radial diffusion of free counterions in the diffuse layer with Grosse model. For the high-frequency dielectric relaxation, Hanai theory and the corresponding analysis method were used to calculate the phase parameters of the constituent phases in these systems. The reasonable analysis results suggest that the high-frequency relaxation probably originated from the interfacial polarization. The structural and electrical information of the present systems were obtained from the phase parameters simultaneously.  相似文献   

5.
A mixture of water (10 mM KCl), toluene and Triton X-100 (40:40:20 wt %) shows temperature-dependent phase inversion. The phase inversion has been studied by dielectric spectroscopy over a frequency range of 10 Hz to 1 GHz. At temperatures above about 37 degrees C, dielectric relaxation appeared around 10 MHz, which was due to interfacial polarization in a water-in-oil type emulsion. The dielectric relaxation drastically changed between 30 and 25 degrees C. With decreasing temperature, the intensity of dielectric relaxation increased steeply below 30 degrees C to attain a peak at 27 degrees C, where that change was associated with an increase in low-frequency conductivity by about three orders between 30 and 26 degrees C. The dielectric behavior has been interpreted in terms of interfacial polarization with a percolation model in which spherical water droplets, arranged in array in a continuous oil phase, are randomly connected with their nearest neighbors using water bonds.  相似文献   

6.
The effect of heat treatments on the electrical responses of the electrode and surface layer in a giant-permittivity CuO ceramic is investigated. It is found that the giant low-frequency relative permittivity of the CuO ceramic can be tuned by annealing in Ar and O2—it can be reduced by annealing in Ar, and then it can be enhanced up to the initial value by annealing in O2. The results indicate to the effect of oxygen vacancy concentration on the giant dielectric properties of the CuO ceramic. Interestingly, three sets of dielectric relaxations are observed in the O2–annealed sample, which can be assigned as the effects of outmost surface layer, electrode, and grain boundary. Our results reveal that the giant low-frequency dielectric response in the CuO ceramic is associated with both of the interfacial polarization at the sample–electrode interface resulted from a non-Ohmic electrode contact and the outmost surface layer-inner part interface.  相似文献   

7.
In this work we analyze the dielectric properties of dilute colloidal suspensions of nonconducting spherical particles with a thin electrical double layer from experimental data obtained by performing impedance spectroscopy experiments over a broad frequency range, from 20 Hz to 1 GHz. The electrode polarization correction was made by fitting a circuit model in the complex impedance plane (impedance spectrum) using a constant phase angle (CPA) element to fit the electrode polarization in series with the sample impedance. This simple procedure is found to be effective in eliminating the electrode contribution. The dielectric response shows two different dispersions, the alpha relaxation (counterion relaxation) that occurs at low kilohertz frequencies, and the delta relaxation (Maxwell-Wagner effect) found in the MHz range. These are reasonably well fitted over a broad frequency range by the theoretical expressions given by a simplified standard model (not including anomalous conduction) and a generalized model (including anomalous conduction) for the low-frequency dispersion, plus Maxwell-Wagner-O'Konski theory for the delta relaxation in the mid-frequency range. An analysis was also made of the need to include, for these latices, the effects of ion mobility in the Stern layer in order for the values of the zeta-potential obtained from electrophoretic and dielectric data to be compatible with each other.  相似文献   

8.
根据平面层状体系介电弛豫理论研究了反渗透膜UTC-70在各种浓度氯化钠和氯化钾溶液中的介电弛豫行为.利用计算机拟合的方法得到膜/溶液体系的介电参数,并由此计算得到了UTC-70膜相和水溶液相的相参数,获得了反映反渗透膜UTC-70荷电情况的信息及其与电解质溶液浓度的关系,介电解析的结果解释了介电弛豫的产生机制.  相似文献   

9.
The dielectric properties of polyurethane (PUR) latex–boehmite alumina nanocomposites were investigated by means of broadband dielectric spectroscopy in the temperature range ?100 °C to 70 °C. The concentration of the filler (alumina) was kept constant at 10 phr for all specimens, whereas the mean particle diameter (namely 220, 90, and 25 nm) of the incorporated nanoparticles varied accordingly. For reasons of comparison, pure PUR was also examined. Four distinct relaxation modes were recorded in the spectra of all systems. They were attributed to interfacial polarization, glass transition (α‐relaxation), local motions of polar side groups, and chain segments (β‐relaxation and γ‐relaxation). All four relaxation processes exhibit a symmetric distribution of relaxation times, which in the case of interfacial polarization, becomes narrower. The intensity of interfacial polarization increases with the reduction of the mean particle diameter indicating enhanced interfacial area. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

10.
A dielectric technique that can image local permittivity and conductivity has been applied to living biological cells in an aqueous environment. The local permittivity and conductivity were measured between 10 kHz and 10 MHz with a fine probe electrode, which was laterally scanned over cells on a plate electrode. The dielectric images of the cells depended on frequency, indicating dielectric relaxation that is due to interfacial polarization. The low-frequency image (at 10 KHz) in which the cells have high permittivity and low conductivity compared with the medium results from the presence of the plasma membrane with high resistivity. The dielectric image of the cell interior is obtainable at high frequencies (10 MHz), where the plasma membrane is short-circuited.  相似文献   

11.
The dielectric relaxation of a 1 wt % mixture of di-n-butylether in 3-methylpentane has been measured across a range of eight decades, in which the characteristic relaxation time varies from 5 s to 50 ns. Each loss spectrum is a superposition of the dispersive solvent peak and a Debye peak which is one decade slower and readily assigned to the larger and more dipolar solute molecules. Fluctuating environments or rate exchange is made responsible for the Debye nature of probe rotation, implying that the environmental relaxation times fluctuate on time scales which are faster than the rotational correlation decay of the probe molecule. Within the experimental range from 2.2 s to 42 ns regarding the mean alpha-relaxation time, the results are consistent with the exchange time matching the upper limit of structural relaxation times or two to three times their average value. As T(g) is approached, no indication for a variation in exchange behavior or for slower environmental fluctuations is found.  相似文献   

12.
The cloudy Silwet L-77 aqueous solution on the concentration range from 0.5%to 50%was investigated by dielectric relaxation spectroscopy.The concentration dependence of phase microstructure was confirmed by means of analyzing the dielectric parameters of bulk solution.The relaxation behavior was assigned to the interfacial polarization between the micelle and the medium,and the relaxation distribution parameter was used to figure the shape transition from sphere to ellipsoid with the concentration increasing.The synchronous reduction of permittivity and conductivity indicated the formation of the lamellar phase. As compensation,the quantity of the surfactant liquid phase gradually decreased,whose shape constantly kept ellipsoidal.  相似文献   

13.
Dielectric spectroscopy (DS) was applied to a nanofiltration (NF) membrane to detect its double-layer structure and ion permeation. Dielectric measurements were carried out on the systems composed of the NF membrane NTR7450 and dilute solutions of eight electrolytes, LiCl, NaCl, KCl, NH(4)Cl, MgCl(2), CaCl(2), BaCl(2), and CuCl(2). Two relaxations were observed in the frequency range from 40 Hz to 4 MHz for each system. On the basis of characteristics of the dielectric spectra and the Maxwell-Wagner interfacial polarization theory, the low-frequency relaxation was attributed to inhomogeneity of the membrane structure itself, whereas the high-frequency relaxation was attributed to interfacial polarization between the membrane and the solution. A multiphase dielectric model previously developed by one of the authors and co-workers was adopted to present systems to analyze the dielectric spectra, and electric parameters, i.e., capacitance and conductance, of the two layers composing the membrane were obtained. The electric properties estimated for the two layers were different and changed with the environment in a different manner. Further analyses suggest that the two layers had a different separation mechanism due to their difference in materials, looseness, and fixed charge content. The fixed charge density of one layer was estimated, and the ion permeation difficulties in both layers was compared. This research revealed that DS was by far an effective method to obtain detailed electric parameters about the inner multilayer structure of the NF membrane and to elucidate separation mechanisms of each layer.  相似文献   

14.
Dielectric relaxation dynamics of secondary amides is explored in their supercooled state near the glass transition temperature Tg by investigating N-ethylacetamide and its mixtures with N-methylformamide. All the samples are found to exhibit giant dielectric permittivities, reaching over 500 in N-methylformamide-rich mixtures around Tg. For both the neat and binary systems, the predominant relaxation peak is of the Debye-type throughout the viscous regime, which is an unexpected feature for a glass former with intermediate fragility. The present results combined with the earlier reported high-temperature data reveal that the dielectric strength delta epsilon(D) of the Debye relaxation extrapolates to zero at frequencies of 10(10)-10(11) Hz, which is about two orders of magnitude lower than the phonon frequency limit typical of the structural relaxation. This Debye process is remarkably similar to the dielectric behavior of many monohydroxy alcohols, which implies a common nature of purely exponential relaxation dynamics in these liquids. Based on the dielectric properties, we conclude that the Debye relaxation in the secondary amides is not a direct signature of the primary or alpha-relaxation, the latter being obscured at low temperatures due to the relatively low permittivity and close spectral proximity to the Debye peak. As in the case of monohydroxy alcohols, dielectric polarization and structure fluctuate on different time scales in secondary amides. The Kirkwood-Fr?hlich correlation factors for Debye-type liquids are also discussed.  相似文献   

15.
Broadband isothermal dielectric relaxation measurements of anhydrous fructose, glucose, galactose, sorbose, and ribose were made at ambient pressure in their liquidus and glassy states. We found a new secondary relaxation in fructose and glucose that is slower than those seen before by others. This new secondary relaxation also appears in the dielectric spectra of galactose, sorbose, and ribose, and hence it is a general feature of the relaxation dynamics of the monosaccharides. Dielectric measurements at elevated pressure of fructose and ribose show that the new secondary relaxation shifts to lower frequencies with applied pressures, mimicking the behavior of the alpha-relaxation. In contrast, the faster secondary relaxation remains stationary on applying pressure. These results together with other inferences indicate that the slower secondary relaxation bears relations to the alpha-relaxation, and hence, it is the true Johari-Goldstein secondary relaxation of the monosaccharides.  相似文献   

16.
 A dielectric imaging technique with a scanning dielectric microscope was applied to polystyrene microcapsules in an aqueous environment to study the electrical properties of individual ones. The dielectric images obtained over a frequency range from 10 kHz to 10 MHz showed frequency dependence, which indicated dielectric dispersion (or relaxation) due to interfacial polarization or the build up of charge on the boundaries between the microcapsule shell and the aqueous phases. The dielectric dispersion was analyzed based on an equivalent electrical circuit model and a shell-sphere model in which a spherical core is covered with an insulating shell. Received: 26 September 1997 Accepted: 26 December 1997  相似文献   

17.
Low-frequency (1 mHz–100 Hz) dielectric relaxation modes were experimentally studied in ferroelectric liquid crystal (FLC)/gold nanoparticles (nanospheres and nanorods) dispersion. It was demonstrated that the dielectric spectra of nanodispersion are strongly influenced by the shape of nanoparticles. Using different formalisms of the impedance spectroscopy, three possible low-frequency relaxation processes were found in the dispersions and the pure FLC. Due to the electrical double layers (EDLs) near nanoparticles and the alignment layers, one can observe the relaxation of the EDL polarisation around the nanoparticles (Schwarz’s relaxation) and near the driving indium tin oxide (ITO) electrodes (electrode polarisation). The other possible relaxation process is interfacial polarisation (Maxwell–Wagner mode) in which the frequency is unaffected by the nanoparticles. It was shown that Schwarz’s relaxation frequency strongly depended on the shape and size of the nanoparticles. Moreover, dispersion of nanoparticles significantly reduced direct current conductivity of the FLC mixture.  相似文献   

18.
Piezoelectric relaxation has been studied on elongated poly(γ-methyl-L-glutamate) films with the α-helical molecular conformation. Relaxation processes are observed near 0 and 100°C. Each process has a dual character composed of relaxational and retardational frequency dependences. The low-temperature process is ascribed to thermal motion of side chains. The high-temperature process, discussed in relation to the dielectric relaxation, is attributed to the ionic dc conduction connected with the two-phase structure of crystalline regions and the electrode polarization.  相似文献   

19.
The molecular dynamics of oligomeric poly(propylene glycol) (PPG) liquids (MW=1000, 2000, and 4000 g/mol) confined in a two-dimensional layer-structured Na-vermiculite clay has been studied by broadband dielectric spectroscopy. The alpha-relaxation and the normal mode relaxation processes were studied for all samples in bulk and confinement. The most prominent experimental observation was that for the normal mode process: the relaxation rate in the clay is drastically shifted to lower frequencies compared to that of the bulk material. This slowing down is probably caused by the strongly reduced number of accessible chain conformations in two dimensions. Also the temperature dependence of the relaxation time for the normal mode process is strongly affected by the confinement. In contrast, for the alpha-relaxation of the confined polymers we observed only a slight increase of the relaxation rate at high temperatures compared to the corresponding bulk samples, and a decrease of its relaxation strength relative to the beta relaxation. Thus, the glass transition is unaffected by the 2D confinement, suggesting that the underlying phenomena responsible for the glass transition is the same as in bulk. Moreover, in the clay the intensity of the normal mode is stronger than that of the alpha-process, in contrast to the bulk samples where the opposite behavior is observed.  相似文献   

20.
结合DLVO理论和壳聚糖微球的特点, 提出了适合实验数据的电动力学模型, 并分析了浓厚分散系的界面极化弛豫的微观机制. 进而测量了不同粒径壳聚糖微球悬浊液的介电谱, 发现在10~100 MHz频率范围内均出现明显的介电弛豫现象. 利用上述模型合理解释了该弛豫现象以及微球粒径对界面极化弛豫的影响, 结果也证明了我们提出的模型的适当性. 此外, 利用Hanai方法, 通过介电参数准确计算出了各悬浊液的内部信息, 并且分析了这些实时信息的合理性. 研究结果从实验和理论两方面展示了介电谱方法在即时获取壳聚糖内部信息上的独到优势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号