首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simultaneous multicomponent analysis is usually carried out using multivariate calibration models, such as the partial least squares (PLS) one, that utilize the full spectrum. It has been shown by both experimental and theoretical considerations that better results can by obtained by proper selection of the spectral range to be included in calculations. A genetic algorithm (GA) is one of the most popular methods for selecting variables for PLS calibration of mixtures with almost identical spectra without loss of predictive capability. In this work, a simple and precise method for rapid and accurate simultaneous determination of sulfide and sulfite ions based on the addition reaction of these ions with new fuchsin at pH 8 and 25°C using PLS regression and GA for variable selection is proposed. The concentrations of sulfide ions varied between 0.05–2.50 and 0.15–2.00 μg/mL, respectively. A series of model solutions containing different concentrations of sulfide and sulfite were used to check the predictive ability of GA-PLS models. The root mean square error of prediction with PLS on the whole data set was 0.19 μg/mL for sulfide and 0.09 μg/mL for sulfite. After the application of GA, these values reduced to 0.04 and 0.03 μg/mL, respectively. The text was submitted by the authors in English.  相似文献   

2.
Ghasemi J  Niazi A  Leardi R 《Talanta》2003,59(2):311-317
Genetic algorithm (GA) is a suitable method for selecting wavelengths for PLS (partial least squares) calibration of mixtures with almost identical spectra without loss of prediction capacity using spectrophotometric method. The method is based on the development of the reaction between the analytes and Zincon at pH 9. A series of synthetic solution containing different concentrations of copper and zinc were used to check the prediction ability of the GA-PLS models. The RMSD for copper and zinc with GA and without GA were 0.0407 and 0.0865, 0.2147 and 0.3005, respectively. Calibration matrices were 0.05-1.8 and 0.05-1.5 μg ml−1 for copper and zinc, respectively. This procedure allows the simultaneous determination of cited ions in natural, tap and waste waters good reliability of the determination was proved.  相似文献   

3.
A method for sulfur determination in diesel fuel employing near infrared spectroscopy, variable selection and multivariate calibration is described. The performances of principal component regression (PCR) and partial least square (PLS) chemometric methods were compared with those shown by multiple linear regression (MLR), performed after variable selection based on the genetic algorithm (GA) or the successive projection algorithm (SPA). Ninety seven diesel samples were divided into three sets (41 for calibration, 30 for internal validation and 26 for external validation), each of them covering the full range of sulfur concentrations (from 0.07 to 0.33% w/w). Transflectance measurements were performed from 850 to 1800 nm. Although principal component analysis identified the presence of three groups, PLS, PCR and MLR provided models whose predicting capabilities were independent of the diesel type. Calibration with PLS and PCR employing all the 454 wavelengths provided root mean square errors of prediction (RMSEP) of 0.036% and 0.043% for the validation set, respectively. The use of GA and SPA for variable selection provided calibration models based on 19 and 9 wavelengths, with a RMSEP of 0.031% (PLS-GA), 0.022% (MLR-SPA) and 0.034% (MLR-GA). As the ASTM 4294 method allows a reproducibility of 0.05%, it can be concluded that a method based on NIR spectroscopy and multivariate calibration can be employed for the determination of sulfur in diesel fuels. Furthermore, the selection of variables can provide more robust calibration models and SPA provided more parsimonious models than GA.  相似文献   

4.
This paper reports the results of a rapid method to determine sucrose in chocolate mass using near infrared spectroscopy (NIRS). We applied a broad-based calibration approach, which consists in putting together in one single calibration samples of various types of chocolate mass. This approach increases the concentration range for one or more compositional parameters, improves the model performance and requires just one calibration model for several recipes. The data were modelled using partial least squares (PLS) and multiple linear regression (MLR). The MLR models were developed using a variable selection based on the coefficient regression of PLS and genetic algorithm (GA). High correlation coefficients (0.998, 0.997, 0.998 for PLS, MLR and GA-MLR, respectively) and low prediction errors confirms the good predictability of the models. The results show that NIR can be used as rapid method to determine sucrose in chocolate mass in chocolate factories.  相似文献   

5.
Near infrared (NIR) spectra in the 1300– 1850 nm region were measured for control serum solutions containing both albumin and γ-globulin of various concentrations. Partial least squares two (PLS2) regression was applied to the NIR spectra to determine simultaneously the concentrations of both proteins. For albumin, the correlation coefficient (R) of 0.988, the standard error of calibration (SEC) of 1.61 g/L, the standard error of prediction (SEP) of 1.29 g/L, the relative standard deviation (RSD) of 0.026 and the ratio of standard deviation of reference data in prediction to SEP (RPD) of 12.2 were obtained. For γ-globulin, the corresponding values were 0.997, 1.36 g/L, 1.35 g/L, 0.0365 and 8.66, respectively. The regression coefficients (RCs) of PLS factors were compared between albumin and γ-globulin, and the observed differences in the RCs were discussed based upon the differences in the hydration between albumin and γ-globulin. In order to explore the effects of various metabolites such as glucose, and cholesterol on the chemometrics models, the RCs for albumin and γ-globulin in the control serum solutions were also compared with those for albumin and γ-globulin in phosphate buffer solutions previously studied. The results of our experiments show that NIR spectroscopy with the use of PLS2 regression has considerable promise in nondestructive determination of the concentrations of blood serum proteins. Received: 31 December 1997 / Revised: 9 April 1998 / Accepted: 27 April 1998  相似文献   

6.
Ni Xin  Qinghua Meng  Yizhen Li  Yuzhu Hu 《中国化学》2011,29(11):2533-2540
This paper indicates the possibility to use near infrared (NIR) spectral similarity as a rapid method to estimate the quality of Flos Lonicerae. Variable selection together with modelling techniques is utilized to select representative variables that are used to calculate the similarity. NIR is used to build calibration models to predict the bacteriostatic activity of Flos Lonicerae. For the determination of the bacteriostatic activity, the in vitro experiment is used. Models are built for the Gram‐positive bacteria and also for the Gram‐negative bacteria. A genetic algorithm combined with partial least squares regression (GA‐PLS) is used to perform the calibration. The results of GA‐PLS models are compared to interval partial least squares (iPLS) models, full‐spectrum PLS and full‐spectrum principal component regression (PCR) models. Then, the variables in the two GA‐PLS models are combined and then used to calculate the NIR spectral similarity of samples. The similarity based on the characteristic variables and full spectrum is used for evaluating the fingerprints of Flos Lonicerae, respectively. The results show that the combination of variable selection method, modelling techniques and similarity analysis might be a powerful tool for quality control of traditional Chinese medicine (TCM).  相似文献   

7.
A partial least squares (PLS) regression model based on attenuated total reflectance–Fourier transform infrared spectra of heated olive oil samples has been developed for the determination of polymerized triacylglycerides (PTGs) generated during thermal treatment of oil. Three different approaches for selection of the spectral regions used to build the PLS model were tested and compared: (1) variable selection based on expert knowledge, (2) uninformative variable elimination PLS, and (3) interval PLS. Each of the three variable selection methods provided PLS models from heated olive oil samples with excellent performance for the prediction of PTGs in fried olive oils with comparable model statistics. However, besides a high coefficient of determination (R 2 of 0.991) and low calibration, validation, and prediction errors of 1.14%, 1.21%, and 1.40% w/w, respectively, variable selection based on expert knowledge gave additionally almost identical low calibration (−0.0017% w/w) and prediction (−0.0023% w/w) bias. Furthermore, it was verified that the determination of PTGs was not influenced by the type of foodstuff fried in the olive oil.  相似文献   

8.
The selection abilities of the two well‐known techniques of variable selection, synergy interval‐partial least‐squares (SiPLS) and genetic algorithm‐partial least‐squares (GA‐PLS), have been examined and compared. By using different simulated and real (corn and metabolite) datasets, keeping in view the spectral overlapping of the components, the influence of the selection of either intervals of variables or individual variables on the prediction performances was examined. In the simulated datasets, with decrease in the overlapping of the spectra of components and cases with components of narrow bands, GA‐PLS results were better. In contrast, the performance of SiPLS was higher for data of intermediate overlapping. For mixtures of high overlapping analytes, GA‐PLS showed slightly better performance. However, significant differences between the results of the two selection methods were not observed in most of the cases. Although SiPLS resulted in slightly better performance of prediction in the case of corn dataset except for the prediction of the moisture content, the improvement obtained by SiPLS compared with that by GA‐PLS was not significant. For real data of less overlapped components (metabolite dataset), GA‐PLS that tends to select far fewer variables did not give significantly better root mean square error of cross‐validation (RMSECV), cross‐validated R2 (Q2), and root mean square error of prediction (RMSEP) compared with SiPLS. Irrespective of the type of dataset, GA‐PLS resulted in models with fewer latent variables (LVs). When comparing the computational time of the methods, GA‐PLS is considered superior to SiPLS. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
10.
11.
Genetic algorithm (GA) is a suitable method for selecting wavelengths for partial least squares (PLS) calibration of mixtures with almost identical spectra without loss of prediction capacity using the spectrophotometric method. In this study, the concentration model is based on absorption spectra in the range of 200‐320 nm for 25 different mixtures of ascorbic acid (AA) and uric acid (UA). The calibration curve was linear over the concentration range of 1‐15 and 2‐16 μg mL?1 for ascorbic acid and uric acid, respectively. The root mean square deviation (RMSD) for ascorbic acid and uric acid with GA and without GA were 0.3071 and 0.3006, 0.3971 and 0.7063, respectively. The proposed method was successfully applied to the simultaneous determination of both analytes in human serum and urine samples.  相似文献   

12.
In this study, the simultaneous determination of paracetamol, ibuprofen and caffeine in pharmaceuticals by chemometric approaches using UV spectrophotometry has been reported as a simple alternative to using separate models for each component. Spectra of paracetamol, ibuprofen and caffeine were recorded at several concentrations within their linear ranges and were used to compute the calibration mixture between wavelengths 200 and 400 nm at an interval of 1 nm in methanol:0.1 HCl (3:1). Partial least squares regression (PLS), genetic algorithm coupled with PLS (GA-PLS), and principal component-artificial neural network (PC-ANN) were used for chemometric analysis of data and the parameters of the chemometric procedures were optimized. The analytical performances of these chemometric methods were characterized by relative prediction errors and recoveries (%) and were compared with each other. The GA-PLS shows superiority over other applied multivariate methods due to the wavelength selection in PLS calibration using a genetic algorithm without loss of prediction capacity. Although the components show an important degree of spectral overlap, they have been determined simultaneously and rapidly requiring no separation step. These three methods were successfully applied to pharmaceutical formulation, capsule, with no interference from excipients as indicated by the recovery study results. The proposed methods are simple and rapid and can be easily used in the quality control of drugs as alternative analysis tools.  相似文献   

13.
In this work we evaluated the use of different variable selection techniques combined with partial least‐squares regression (PLS) – genetic algorithm PLS (GA‐PLS), interval PLS (iPLS), and synergy interval PLS (siPLS) – in the simultaneous determination of Cd(II), Cu(II), Pb(II) and Zn(II) by anodic stripping voltammetry at a bismuth film. Generally, variable selection provided an improvement in prediction results when compared to full‐voltammogram PLS. The use of interval selection based algorithms have shown to be most adequate than the selection of discrete variables by GA. Excellent analytical performances were obtained despite the inherent complexity of the simultaneous determination.  相似文献   

14.
以普通玉米籽粒为试验材料,在应用遗传算法结合偏最小二乘回归法对近红外光谱数据进行特征波长选择的基础上,应用偏最小二乘回归法建立了特征波长测定玉米籽粒中淀粉含量的校正模型.试验结果表明,基于11个特征波长所建立的校正模型,其校正误差(RMSEC)、交叉检验误差(RMSECV)和预测误差(RMSEP)分别为0.30%、0.35%和0.27%,校正数据集和独立的检验数据集的预测值与实际测定值之间的相关系数分别达到0.9279和0.9390,与全光谱数据所建立的预测模型相比,在预测精度上均有所改善,表明应用遗传算法和PLS进行光谱特征选择,能获得更简单和更好的模型,为玉米籽粒中淀粉含量的近红外测定和红外光谱数据的处理提供了新的方法与途径.  相似文献   

15.
A method is described for measuring the concentrations of both glucose and glutamine in binary mixtures from near infrared (NIR) absorption spectra. Spectra are collected over the range from 5000–4000/cm (2.0–2.5μm) with a 1-mm optical path length. Glucose absorbance features at 4710, 4400, and 4300/cm and glutamine features at 4700, 4580, and 4390/cm provide the analytical information required for the measurement. Multivariate calibration models are generated by using partial least squares (PLS) regression alone and PLS regression combined with a preprocessing digital Fourier filtering step. The ideal number of PLS factors and spectral range are identified separately for each analyte. In addition, the optimum Fourier filter parameters are established for both compounds. The best overall analytical performance is obtained by combining Fourier filtering and PLS regression. Glucose measurements are established over the concentration range from 1.66–59.91 mM, with a standard error of prediction (SEP) of 0.32 mM and a mean percent error of 1.84%. Glutamine can be measured over the concentration range from 1.10–30.65 mM with a SEP of 0.75 mM and a mean percent error of 6.67%. These results demonstrate the analytical utility of NIR spectroscopy for monitoring glucose and glutamine levels in mammalian and insect cell cultures.  相似文献   

16.
17.
18.
遗传算法用于偏最小二乘方法建模中的变量筛选   总被引:19,自引:0,他引:19  
利用全局搜索方法-遗传算法(genetic algorithms,GA)对近红外光谱分析中的波长变量进行筛选,再用偏最小二乘方法(patrial least squares,PLS)建立分析校正模型。对两类样品的近红外光谱分析应用实例表明,这种选取变量进行校正的方法,不仅简化、优化了模型,而且增强了所建模型的预测能力,尤其适用于单纯PLS较以校正关联的体系。  相似文献   

19.
20.
Different calibration methods have been applied for the determination of the Hydroxyl Number in polyester resins, namely Partial Least Squares (PLS), Principal Component Regression (PCR), Ordinary Least Squares with selection of the variables by genetic algorithm (OLS-GEN) and back-propagation Artificial Neural Networks (BP-ANN). The predictive ability of the regression models was estimated by splitting the dataset in training and test sets by application of the Kohonen self-organising maps. The linear methods (OLS-GEN, PLS and PCR) showed comparable results while artificial neural networks provided the best results both in fitting and prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号