首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
G5.0‐OH PAMAM dendrimers were used to prepare fluorescent silver clusters with weaker ultraviolet irradiation reduction method, in which the molar ratio of Ag+ to PAMAM dendrimers was the key factor to determine the geometry and properties of silver nanoparticles. The results showed that because of G5.0‐OH PAMAM dendrimers as strong encapsulatores, when the molar ratios of Ag+ to PAMAM dendrimers was smaller than 5, the obtained Agn clusters (n<5) had line structures and "molecular‐like" properties, which were highly fluorescent and quite stable in aqueous solution. Whereas when the molar ratios were between 5 and 8, the obtained Agn clusters were 2D structures and their fluorescence was weaker. When the molar ratio was larger than 8, the structure of silver nanoparticles was 3D and no fluorescence was observed from the obtained silver nanoparticles.  相似文献   

2.
A series of dendritic ionic liquids (DILs) based on imidazolium‐modified poly(aryl ether) dendrimers IL‐Br‐Gn (n=0–3) were synthesized by a modified convergent approach and “click” chemistry. The resulting DILs exhibited high thermal resistance with decomposition temperatures up to 270 °C and low glass transition temperatures in the range of approximately ?5–0 °C. All IL‐Br‐Gn were found to be miscible with water at any ratio and could encapsulate hydrophobic molecules. The reversible phase transfer of the DILs between the aqueous and organic phases was accomplished by simple anion exchange between the hydrophilic Br? anion and the hydrophobic bis(trifluoromethylsulfonyl)amide anion (NTf2?). IL‐Br‐Gn could be used as transporters to shuttle hydrophobic molecules between the organic and aqueous phases efficiently. The present work provides a new kind of transporting materials with potential applications in substance separation, drug delivery, and biomolecule transport.  相似文献   

3.
The hydrophobic ionic liquid N‐butyl‐N‐methylpyrrolidinium bis((trifluoromethyl)sulfonyl)amide (BMP‐TFSA IL), which contains a series of flexible ionophores of polypyridine‐type small molecules or two rigid ionophores of peripherally pyridine‐modified PAMAM dendrimers, was used to extract cupric ions from aqueous solutions. The polypyridine‐type ionophores show good selectivity toward cupric ions at pH 2. The selectivity is affected by the spacing between the two amino groups. However, the pyridine‐modified dendrimers showed poor selectivity, although their extraction efficiency still depended on the pH of the aqueous solution. The ionic liquids that contained small molecular ionophores and their dendrimer analogs were reused after acid washing or electrochemical reduction. During acid washing, the nitrogen atoms of the ionophores were protonated to release the cupric ions into the aqueous phase, and the copper atoms were deposited onto the electrode surface during the electrochemical reduction accompanied by the regeneration of the ionophores.  相似文献   

4.
Ab initio and density functional theory calculations carried out on linear and dendritic polyacetylenic (PA) oligomers of different size showed that acetylenic dendrimers are less stable than trans‐PA oligomers and that the instability increases with molecular weight reflecting the strain in crowded hyperbranched structures. However, the energy difference between linear and dendritic structure is rather small and tends to a limit with molecular weight. Twisting of the double bonds decreases the conjugation in hyperbranched PA compared to linear trans‐PA. However, the conjugation though less effective than in trans‐PA is extended up to the 4th or 5th generation of dendrimers. It was shown that bromine end groups strongly affect the electronic properties of acetylenic dendrimers decreasing even more the conjugation due to the sterical hindrances, however, highly polarizable bromine atoms reduced significantly the adiabatic potentials of ionization to be very close to that for trans‐PA oligomers.  相似文献   

5.
Three generations of diethanolamine‐based dendrimers containing nitroazobenzene were synthesized. Firstly, G1 was prepared by the diazotation of p‐nitroaniline, and then the obtained salts reacted with n‐phenyl‐2,2′‐iminodiethanol. The reaction of hydroxyl groups of diethanolamine of G1 and G2 with acryloyl chloride resulted in G1.5 and G2.5. Then, G2 and G3 were synthesized using Michael addition of amino group of diethanolamine and G1.5 and G2.5. The Williamson etherification and azo‐reaction were employed in the preparation of the mesogenic unit 4‐[4‐(6‐bromohexyloxy)phenylazo]nitrobenzene (N6‐Br). Secondly, mesogen‐functionalized dendrimers were synthesized via the coupling of the hydroxyl group of G1, G2, G3, and bromine from mesogenic units (N6‐Br). The polarizing optical microscopy (POM) and differential scanning calorimetry (DSC) were used for the investigation of the liquid crystalline properties of the mesogen‐functionalized dendrimers. The structures of obtained compounds were investigated using common spectroscopy methods and CHN analysis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Cellulose nanocrystals (CNCs) spontaneously assemble into gels when mixed with a polyionic organic or inorganic salt. Here, we have used this ion‐induced gelation strategy to create functional CNC gels with a rigid tetracationic macrocycle, cyclobis(paraquat‐p‐phenylene) ( CBPQT 4+). Addition of [ CBPQT ]Cl4 to CNCs causes gelation and embeds an active host inside the material. The fabricated CNC gels can reversibly absorb guest molecules from solution then undergo molecular recognition processes that create colorful host–guest complexes. These materials have been implemented in gel chromatography (for guest exchange and separation), and as elements to encode 2‐ and 3‐dimensional patterns. We anticipate that this concept might be extended to design a set of responsive and selective gel‐like materials functioning as, for instance, water‐pollutant scavengers, substrates for chiral separations, or molecular flasks.  相似文献   

7.
The viscoelastic properties of decrosslinked irradiation‐crosslinked polyethylenes using a supercritical methanol were investigated via oscillatory dynamic shear measurements. Decrosslinked polymers at a low reaction temperature exhibited solid‐like rheological properties, as evidenced by a small slope at G′ and G″, a long relaxation time, slow stress relaxation behavior, and considerable yield stress. In contrast, decrosslinked polymers at a high temperature exhibited liquid‐like rheological properties that included a large slope in G′ and G″, a short relaxation time, fast stress relaxation behavior, and nonyield stress. The difference in the viscoelastic properties of the decrosslinked polyethylenes was attributed to the difference in the gel content with the reaction temperature. A higher gel content induced stronger solid‐like viscoelastic properties. Hence, the rheological measurements were useful for analyzing the molecular structure of decrosslinked polymers using a supercritical fluid. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1265–1270, 2010  相似文献   

8.
《先进技术聚合物》2018,29(2):934-940
A novel heat‐curable silicone rubber (MCSR/Si‐PAMAM) was prepared by using siloxane polyamidoamine (Si‐PAMAM) dendrimers as cross‐linkers and polysiloxane containing γ‐chloropropyl groups as gums. The chemical cross‐linking occurs through the reaction between Si‐PAMAM dendrimers and polysiloxane containing γ‐chloropropyl groups. The effect of various amounts of cross‐linkers on mechanical properties of MCSR/Si‐PAMAM was discussed in this paper. MCSR/Si‐PAMAM exhibits favorable mechanical properties with a tensile strength of 10.06 MPa and a tear strength of 47.9 kN/m when the molar ratio r of [N‐H]/[CH2CH2CH2Cl] is 1:1. These excellent mechanical properties can be attributed to the formation of concentrative cross‐linking from Si‐PAMAM dendrimers in the cross‐linking networks, along with the introduction of Si–O–Si units in the internal structure of dendrimers. The introduction of Si–O–Si units reduces the steric hindrance of molecular structure, which facilitates the N–H bonds in the interior layers of dendrimers to react with γ‐chloropropyl groups. In addition, thermogravimetric analysis results indicate that MCSR/Si‐PAMAM is thermally stable even at high temperatures in a nitrogen atmosphere. Differential scanning calorimetry analysis reveals that the glass transition peak of MCSR/Si‐PAMAM is not identified in the temperature range −150 to −30°C, only a melting endothermic peak at −40°C.  相似文献   

9.
The synthesis and characterisation of new arborescent architectures of poly(L ‐lysine), called lysine dendrigraft (DGL) polymers, are described. DGL polymers were prepared through a multiple‐generation scheme (up to generation 5) in a weakly acidic aqueous medium by polycondensing Nε‐trifluoroacetyl‐L ‐lysine‐N‐carboxyanhydride (Lys(Tfa)‐NCA) onto the previous generation G(n?1) of DGL, which was used as a macroinitiator. The first generation employed spontaneous NCA polycondensation in water without a macroinitiator; this afforded low‐molecular‐weight, linear poly(L ‐lysine) G1 with a polymerisation degree of 8 and a polydispersity index of 1.2. The spontaneous precipitation of the growing Nε‐Tfa‐protected polymer (GnP) ensures moderate control of the molecular weight (with unimodal distribution) and easy work‐up. The subsequent alkaline removal of Tfa protecting groups afforded generation Gn of DGL as a free form (with 35–60 % overall yield from NCA precursor, depending on the DGL generation) that was either used directly in the synthesis of the next generation (G(n+1)) or collected for other uses. Unprotected forms of DGL G1–G5 were characterised by size‐exclusion chromatography, capillary electrophoresis and 1H NMR spectroscopy. The latter technique allowed us to assess the branching density of DGL, the degree of which (ca. 25 %) turned out to be intermediate between previously described dendritic graft poly(L ‐lysines) and lysine dendrimers. An optimised monomer (NCA) versus macroinitiator (DGL G(n?1)) ratio allowed us to obtain unimodal molecular weight distributions with polydispersity indexes ranging from 1.3 to 1.5. Together with the possibility of reaching high molecular weights (with a polymerisation degree of ca. 1000 for G5) within a few synthetic steps, this synthetic route to DGL provides an easy, cost‐efficient, multigram‐scale access to dendritic polylysines with various potential applications in biology and in other domains.  相似文献   

10.
To analyze the structure of junction zones formed in methylcellulose (MC) gel, the modified Eldridge–Ferry method was applied to phase diagrams for aqueous solutions of different molecular weight MCs derived from micro‐DSC, small‐angle X‐ray scattering, and visual inspection. The results suggested that junctions in MC gels took thin, rodlike fringed‐micellar crystallites. The junction multiplicity s decreased from 4.3 for low‐temperature melting gels to 2.0 for high‐temperature melting gels. With increasing molecular weight, the number ζ of statistical units in a junction along a single chain increased from 27 to 54. Because the number depends sensitively on the enthalpy of bonding per mole of the repeat units of MC, our estimate is considered to give an upper bound to the junction length. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 943–946, 2001  相似文献   

11.
N‐[(Uracil‐5‐yl)methyl]urea is reported as a minimalistic low‐molecular‐weight hydrogelator (LMWHG). The unusual phosphate‐induced assembly of this compound has been thoroughly investigated by IR, UV/Vis, and NMR spectroscopy, electron microscopy, and rheological experiments. This rare example of an anion‐triggered urea‐based LMWHG is the first example of a pyrimidine‐ and urea‐containing molecule that can be forced into self‐assembly in aqueous solution without additional aromatic or lipophilic groups. The gelator/phosphate ratio within the hydrogel was successfully determined by 31P MAS NMR spectroscopy. The hydrogel exhibits a very fast and repeatable self‐healing property, and remarkable G′ values. The viscoelastic properties of the hydrogel can easily be tuned by variation of the phosphate ratio.  相似文献   

12.
A new class of poly(benzyl ether) dendrimers, decorated in their cores with N‐Boc‐protected 1,2‐diphenylethylenediamine groups, were synthesized and fully characterized. It was found that the gelation capability of these dendrimers was highly dependent on dendrimer generation, and the second‐generation dendrimer (R,R)‐G2DPENBoc proved to be a highly efficient organogelator. A number of experiments (SEM, TEM, FTIR spectroscopy, 1H NMR spectroscopy, rheological measurements, UV/Vis absorption spectroscopy, CD, and XRD) revealed that these dendritic molecules self‐assembled into elastically interpenetrating one‐dimensional nanostructures in organogels. The hydrogen bonding, π–π, and solvophobic interactions were found to be the main driving forces for formation of the gels. Most interestingly, these dendritic organogels exhibited smart multiple‐stimulus‐responsive behavior upon exposure to environmental stimuli such as temperature, anions, and mechanical stress.  相似文献   

13.
The self‐assembly of semiglobular, positively charged poly(propyleneimine) (PPI) dendrimers with small monovalent counterions (e.g., Cl?) in water/acetone mixtures was investigated. We showed that PPI dendrimers can assemble into hollow, spherical, single‐layered blackberry‐type structures mediated by the presence of monovalent counterions. The effects on the assembly of changing the solvent polarity and adjusting the pH were further investigated to confirm the presence of electrostatic interactions and hydrogen bonding as the driving forces. Results showed that PPI dendrimers form stable, hollow spheres in 5–20 % v/v acetone/water and that the size of the spheres decreases monotonically as the solvent polarity and/or the charge on the dendrimers (i.e., lower solution pH) increases. This is the first example to show that small monovalent counterions can trigger attraction among PPI dendrimers (or broadly defined polyelectrolytes) that is strong enough to bring them together to form large, stable supramolecular assemblies, which indicates that these organic macroions have similar solution behavior to more‐well‐defined inorganic molecular macroions.  相似文献   

14.
The copolymerizations of two series of surface functionalized bis(acetylene) G1–G3 dendrimers, one ( S ‐ Gn ) having a structural rigid skeleton and the other ( L ‐ Gn ) a relatively more flexible architecture, with two platinum linkers, cis‐[(Et2PCH2CH2PEt2)PtCl2] ( 2 ) and [Cl(Et3P)2Pt‐C?C‐p‐C6H4‐]2 ( 3 ) were investigated. For both series of dendrimers, only linear and/or cyclic oligomers were formed when the cis‐platinum linker 2 was used. However, high molecular weight (100–200 kD) organoplatinum poly(dendrimer)s were obtained from both series when the elongated linear rod‐liked platinum linker 3 was employed and the formation of cyclic oligomers was greatly suppressed for both the structural rigid S ‐ Gn and the structural flexible L ‐ Gn series. These results are in sharp contrast to our earlier findings (S.‐Y. Cheung, H.‐F. Chow, T. Ngai, X. Wei, Chem. Eur. J. 2009 , 15, 2278–2288) obtained by using a shorter linear platinum linker trans‐[Pt(PEt3)2Cl2] ( 1 ), where a larger amount of cyclic oligomers was formed from the structural flexible L ‐ Gn dendrimers. A model was proposed to rationalize how the geometry and size of the platinum linker could control the copolymerization behaviours of these dendritic macromonomers.  相似文献   

15.
Dendrimers are characterized by a combination of high end‐group functionality and a compact, precisely defined molecular structure. These characteristics can be used in biomedical applications, for example, for the amplification or multiplication of effects on a molecular level, or to create extremely high local concentrations of drugs, molecular labels, or probe moieties. A brief summary of the current state of the art in the field is given, and focuses on the application of dendrimers both in diagnostics as well as in therapy. In diagnostics, dendrimers that bear GdIII complexes are used as contrast agents in magnetic resonance imaging. DNA dendrimers have potential for routine use in high‐throughput functional genomic analysis, as well as for DNA biosensors. Dendrimers are also being investigated for therapeutics, for example, as carriers for controlled drug delivery, in gene transfection, as well as in boron neutron‐capture therapy. Furthermore, the antimicrobial activity of dendrimers has been studied.  相似文献   

16.
The effect of adding acetylated poly(propyleneimine) dendrimers to the structure and rheology of aqueous solutions of high molecular weight poly(ethylene oxide) (PEO) was investigated by rheology and small‐angle neutron scattering in a temperature range of 10–40 °C. In the semidilute regime, the steady shear rheology of PEO solutions was unmodified by the addition of dendrimers at a comparable weight concentration. At the highest concentrations studied, the addition of acetylated dendrimers suppressed the onset of a low‐frequency elastic modulus at the lowest temperature investigated. For comparison, the addition of PEO of a comparable molecular weight at the same weight fraction resulted in a milder suppression but, unlike the dendrimers, greatly increased the solution viscosity. The addition of acetylated dendrimers to a semidilute PEO solution at 10 °C substantially reduced the solution turbidity. These effects on the rheology and optical properties were confirmed by small‐angle neutron scattering measurements of the molecular structure of the mixture. Additional SANS measurements in the dilute regime (0.1 wt % PEO) showed quantitatively that the dendrimers decorated the PEO chains in a necklace structure, such as that observed previously for micelles. The results suggested a mechanism of rheology modification whereby the dendrimers disrupted the association network structure in the PEO solution at lower temperatures by preferentially associating with the PEO chains in solution. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 874–882, 2000  相似文献   

17.
The structure and viscoelastic properties of fumed silica gels in dodecane were studied by means of dynamic rheology. With increasing the specific surface area of fumed silica nanoparticles, the plateau elastic modulus (G′), which is frequency-independent and shows the characteristic of a network of the fumed silica gels, decreases. Such networks of fumed silica gels show a significant temperature-dependent behavior and a transition temperature (T c) related with the restructuring of nanoparticle chain aggregates of fumed silica in gels. Under oscillatory shear, the fumed silica gels experience disorganization and reorganization and present strong structural recovery ability after adjusting oscillatory shear (AOS) at small strain amplitudes (1–10%), and a more perfect network structure than that in origin gels can be induced. Elevated temperature (above T c) improves the network structure to be more compact and stronger than that at a lower temperature, as a result, the deformation resistance during the AOS period and the structural recovery after AOS are enhanced. These results indicate that the network structure and viscoelastic properties of fumed silica gels can be tailored and optimized by performing small-amplitude oscillatory shear at a properly selected temperature.  相似文献   

18.
We report on a pronounced specific‐ion effect on the intermolecular and chiral organization, supramolecular structure formation, and resulting materials properties for a series of low molecular weight peptide‐based hydrogelators, observed in the presence of simple inorganic salts. This effect was demonstrated using aromatic short peptide amphiphiles, based on fluorenylmethoxycarbonyl (Fmoc). Gel‐phase materials were formed due to molecular self‐assembly, driven by a combination of hydrogen bonding and π‐stacking interactions. Pronounced morphological changes were observed by atomic force microscopy (AFM) for Fmoc‐YL peptide, ranging from dense fibrous networks to spherical aggregates, depending on the type of anions present. The gels formed had variable mechanical properties, with G′ values between 0.8 kPa and 2.4 kPa as determined by rheometry. Spectroscopic analysis provided insights into the differential mode of self‐assembly, which was found to be dictated by the hydrophobic interactions of the fluorenyl component, with comparable H‐bonding patterns observed in each case. The efficiency of the anions in promoting the hydrophobic interactions and thereby self‐assembly was found to be consistent with the Hofmeister anion sequence. Similar effects were observed with other hydrophobic peptides, Fmoc‐VL and Fmoc‐LL. The effect was found to be less pronounced for a less hydrophobic peptide, Fmoc‐AA. To get more insights into the molecular mechanism, the effect of anions on sol–gel equilibrium was investigated, which indicates the observed changes result from the specific‐ion effects on gels structure, rather than on the sol–gel equilibrium. Thus, we demonstrate that, by simply changing the ionic environment, structurally diverse materials can be accessed providing an important design consideration in nanofabrication via molecular self‐assembly.  相似文献   

19.
Commercially available fourth and fifth generation poly(propyleneimine) (PPI) dendrimers were functionalized with acetyl chloride and deuterated acetyl chloride. Their solution properties in water and D2O were measured with dilution viscometry, densitometry, rheology, and small‐angle neutron scattering (SANS) and compared to molecular modeling. Both the acetylated and PPI dendrimers exhibited Newtonian rheology in solution at all concentrations, but the functionalized dendrimers were less viscous than the nonacetylated dendrimers at an equal weight fraction (50 wt %). The acetylated dendrimers exhibited a pronounced structure peak in SANS, however, that was not evident for PPI in solution and a greatly enhanced solubility. This structure peak, evident at concentrations as low as 0.2 wt %, was evidence for long‐range electrostatic interdendrimer forces, which were screened by added salt. A quantitative agreement was obtained between the dilute‐limiting absolute scattering spectra of both the nonacetylated and acetylated dendrimers in solution with model calculations via a homogeneous spherical model and input parameters independently obtained from dilution viscometry or direct calculation. The combined measurements verified significant solvent penetration for both dendrimer types. The form factors measured in this manner were also in good quantitative agreement with the results of molecular dynamics simulations, which pointed to significant backfolding of the terminal groups. SANS and rheology measurements at higher concentrations suggested dendrimer clustering and interpenetration with increasing concentration, leading to less structure and lower viscosity than would be predicted from the dilute‐limiting behavior. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 857–873, 2000  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号