首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Flexible lithium‐ion batteries (LIBs) have recently attracted increasing attention with the fast development of bendable electronic systems. Herein, a facile and template‐free solvothermal method is presented for the fabrication of hybrid yolk–shell CoS2 and nitrogen‐doped graphene (NG) sheets. The yolk–shell architecture of CoS2 encapsulated with NG coating is designed for the dual protection of CoS2 to address the structural and interfacial stability concerns facing the CoS2 anode. The as‐prepared composite can be assembled into a film, which can be used as a binder‐free and flexible electrode for LIBs that does not require any carbon black conducting additives or current collectors. When evaluating lithium‐storage properties, such a flexible electrode exhibits a high specific capacity of 992 mAh g?1 in the first reversible discharge capacity at a current rate of 100 mA g?1 and high reversible capacity of 882 mAh g?1 after 150 cycles with excellent capacity retention of 89.91 %. Furthermore, a reversible capacity as high as 655 mAh g?1 is still achieved after 50 cycles even at a high rate of 5 C due to the yolk–shell structure and NG coating, which not only provide short Li‐ion and electron pathways, but also accommodate large volume variation.  相似文献   

2.
We report the synthesis of sandwich‐structured graphene–nickel silicate–Ni ternary composites by using the solvothermal method followed by a simple in situ reduction procedure. The composites show an interesting structure with graphene sandwiched between two layers of well‐dispersed Ni nanoparticles (NPs) anchored on ultrathin nickel silicate nanosheets. These ternary composites exhibit enhanced performance as anode materials owing to the synergistic effect between the graphene matrix and electrochemically inert Ni nanoparticles, an effect that holds promise for the design and fabrication of other advanced electrode materials.  相似文献   

3.
Carbon nanomaterials, especially graphene and carbon nanotubes, are considered to be favorable alternatives to graphite‐based anodes in lithium‐ion batteries, owing to their high specific surface area, electrical conductivity, and excellent mechanical flexibility. However, the limited number of storage sites for lithium ions within the sp2‐carbon hexahedrons leads to the low storage capacity. Thus, rational structure design is essential for the preparation of high‐performance carbon‐based anode materials. Herein, we employed flexible single‐walled carbon nanotubes (SWCNTs) with ultrahigh electrical conductivity as a wrapper for 3D graphene foam (GF) by using a facile dip‐coating process to form a binary network structure. This structure, which offered high electrical conductivity, enlarged the electrode/electrolyte contact area, shortened the electron‐/ion‐transport pathways, and allowed for efficient utilization of the active material, which led to improved electrochemical performance. When used as an anode in lithium‐ion batteries, the SWCNT‐GF electrode delivered a specific capacity of 953 mA h g?1 at a current density of 0.1 A g?1 and a high reversible capacity of 606 mA h g?1 after 1000 cycles, with a capacity retention of 90 % over 1000 cycles at 1 A g?1 and 189 mA h g?1 after 2200 cycles at 5 A g?1.  相似文献   

4.
《Electroanalysis》2017,29(9):2036-2043
The properties of anode material are crucial for high performances in microbial fuel cells (MFCs). Herein, we report a biocompatible, conductive, and electron transfer efficient cooperative processing anode, which is fabricated by electrodepositing polypyrrole/anthraquinone‐2, 6‐disulphonic disodium salt (PPy/AQDS) onto nitric acid‐soaked carbon felt. Results showed that the cooperative processing anode outperformed the pristine one in biomass, electrical conductivity, and exchange current density with better performance between 2.4 and 3.3 times. The maximum power density (1060.3 mW m−2) of the MFC equipped with the properties hybridized anode delivered a 2.2‐fold increase over that of the control and thus has great potential to be used as an anode for high‐power MFC. Further investigation revealed that the contributions of biocompatibility (BCB), electrical conductivity (EC), and electron transfer efficiency (ETE) to the performance of carbon felt anodes appeared as cumulative effect rather than summing effect. We propose combined treatment of BCB with EC and ETE to form a properties‐hybridized anode based on thoroughly analyzing the feasibility and effectiveness, and discussed future efforts to be made for realizing more extraordinary high‐performance cooperative processing anodes. This work may also provide a novel approach for the development of other types of anode for high‐performance MFC through combined treating the BCB with EC and ETE simultaneously.  相似文献   

5.
A novel concept of an iridium‐based bubble‐propelled Janus‐particle‐type graphene micromotor with very high surface area and with very low catalyst loading is described. The low loading of Ir catalyst (0.54 at %) allows for fast motion of graphene microparticles with high surface area of 316.2 m2 g?1. The micromotor was prepared with a simple and scalable method by thermal exfoliation of iridium‐doped graphite oxide precursor composite in hydrogen atmosphere. Oxygen bubbles generated from the decomposition of hydrogen peroxide at the iridium catalytic sites provide robust propulsion thrust for the graphene micromotor. The high surface area and low iridium catalyst loading of the bubble‐propelled graphene motors offer great possibilities for dramatically enhanced cargo delivery.  相似文献   

6.
The preparation of novel one‐dimensional core–shell Fe/Fe2O3 nanowires as anodes for high‐performance lithium‐ion batteries (LIBs) is reported. The nanowires are prepared in a facile synthetic process in aqueous solution under ambient conditions with subsequent annealing treatment that could tune the capacity for lithium storage. When this hybrid is used as an anode material for LIBs, the outer Fe2O3 shell can act as an electrochemically active material to store and release lithium ions, whereas the highly conductive and inactive Fe core functions as nothing more than an efficient electrical conducting pathway and a remarkable buffer to tolerate volume changes of the electrode materials during the insertion and extraction of lithium ions. The core–shell Fe/Fe2O3 nanowire maintains an excellent reversible capacity of over 767 mA h g?1 at 500 mA g?1 after 200 cycles with a high average Coulombic efficiency of 98.6 %. Even at 2000 mA g?1, a stable capacity as high as 538 mA h g?1 could be obtained. The unique composition and nanostructure of this electrode material contribute to this enhanced electrochemical performance. Due to the ease of large‐scale fabrication and superior electrochemical performance, these hybrid nanowires are promising anode materials for the next generation of high‐performance LIBs.  相似文献   

7.
Germanium quantum dots embedded in a nitrogen‐doped graphene matrix with a sponge‐like architecture (Ge/GN sponge) are prepared through a simple and scalable synthetic method, involving freeze drying to obtain the Ge(OH)4/graphene oxide (GO) precursor and subsequent heat reduction treatment. Upon application as an anode for the lithium‐ion battery (LIB), the Ge/GN sponge exhibits a high discharge capacity compared with previously reported N‐doped graphene. The electrode with the as‐synthesized Ge/GN sponge can deliver a capacity of 1258 mAh g?1 even after 50 charge/discharge cycles. This improved electrochemical performance can be attributed to the pore memory effect and highly conductive N‐doping GN matrix from the unique sponge‐like structure.  相似文献   

8.
An organo‐functionalized polyoxometalate (POM)–pyrene hybrid (Py‐Anderson) has been used for noncovalent functionalization of carbon nanotubes (CNTs) to give a Py‐Anderson‐CNT nanocomposite through π–π interactions. The as‐synthesized nanocomposite was used as the anode material for lithium‐ion batteries, and shows higher discharge capacities and better rate capacity and cycling stability than the individual components. When the current density was 0.5 mA cm?2, the nanocomposite exhibited an initial discharge capacity of 1898.5 mA h g?1 and a high discharge capacity of 665.3 mA h g?1 for up to 100 cycles. AC impedance spectroscopy provides insight into the electrochemical properties and the charge‐transfer mechanism of the Py‐Anderson‐CNTs electrode.  相似文献   

9.
Heteroatom doping is an effective method to adjust the electrochemical behavior of carbonaceous materials. In this work, boron‐doped, carbon‐coated SnO2/graphene hybrids (BCTGs) were fabricated by hydrothermal carbonization of sucrose in the presence of SnO2/graphene nanosheets and phenylboronic acid or boric acid as dopant source and subsequent thermal treatment. Owing to their unique 2D core–shell architecture and B‐doped carbon shells, BCTGs have enhanced conductivity and extra active sites for lithium storage. With phenylboronic acid as B source, the resulting hybrid shows outstanding electrochemical performance as the anode in lithium‐ion batteries with a highly stable capacity of 1165 mA h g?1 at 0.1 A g?1 after 360 cycles and an excellent rate capability of 600 mA h g?1 at 3.2 A g?1, and thus outperforms most of the previously reported SnO2‐based anode materials.  相似文献   

10.
The LiFePO4/carbon fiber (LFP/CF) cathodes were prepared by using activated carbon fiber cloth as current collector in place of conventional Al foil. The electrochemical properties of LFP/CF electrodes were analyzed by the cyclic voltammetry and galvanostatic charge/discharge tests. The results indicate that the activated carbon fiber cloth with high specific surface area and high porosity makes the LFP/CF electrode that possesses higher mass loading of 18–21 mg cm–2 and stronger redox reaction ability compared with Al foil-based electrode. The LFP/CF electrode shows excellent rate performance and cycle stability. At 0.1C, the discharge capacity is up to 190.1 mAh g–1 that exceeds the theoretical capacity due to the combination effect of battery and capacitor. Furthermore, the LFP/CF electrode shows an initial capacity of 150.4 mAh g–1 at 1C with a capacity retention of 74.7% after 425 cycles, which is higher than 62.4% for LFP/Al foil electrode, and an initial discharge capacity of 130 mAh g–1 at 5C with a capacity retention of 61.5% after 370 cycles. But this composite electrode is not suitable for charging/discharging at higher rate as 10C due to too much mass loading.  相似文献   

11.
Although lithium–oxygen batteries possess a high theoretical energy density and are considered as promising candidates for next‐generation power systems, the enhancement of safety and cycling efficiency of the lithium anodes while maintaining the high energy storage capability remains difficult. Here, we overcome this challenge by cross‐stacking aligned carbon nanotubes into porous networks for ultrahigh‐capacity lithium anodes to achieve high‐performance lithium–oxygen batteries. The novel anode shows a reversible specific capacity of 3656 mAh g?1, approaching the theoretical capacity of 3861 mAh g?1 of pure lithium. When this anode is employed in lithium–oxygen full batteries, the cycling stability is significantly enhanced, owing to the dendrite‐free morphology and stabilized solid–electrolyte interface. This work presents a new pathway to high performance lithium–oxygen batteries towards practical applications by designing cross‐stacked and aligned structures for one‐dimensional conducting nanomaterials.  相似文献   

12.
The synthesis of nanoporous graphene by a convenient carbon nanofiber assisted self‐assembly approach is reported. Porous structures with large pore volumes, high surface areas, and well‐controlled pore sizes were achieved by employing spherical silica as hard templates with different diameters. Through a general wet‐immersion method, transition‐metal oxide (Fe3O4, Co3O4, NiO) nanocrystals can be easily loaded into nanoporous graphene papers to form three‐dimensional flexible nanoarchitectures. When directly applied as electrodes in lithium‐ion batteries and supercapacitors, the materials exhibited superior electrochemical performances, including an ultra‐high specific capacity, an extended long cycle life, and a high rate capability. In particular, nanoporous Fe3O4–graphene composites can deliver a reversible specific capacity of 1427.5 mAh g?1 at a high current density of 1000 mA g?1 as anode materials in lithium‐ion batteries. Furthermore, nanoporous Co3O4–graphene composites achieved a high supercapacitance of 424.2 F g?1. This work demonstrated that the as‐developed freestanding nanoporous graphene papers could have significant potential for energy storage and conversion applications.  相似文献   

13.
The novel functionalized porphyrin [5,15‐bis(ethynyl)‐10,20‐diphenylporphinato]copper(II) (CuDEPP) was used as electrodes for rechargeable energy‐storage systems with an extraordinary combination of storage capacity, rate capability, and cycling stability. The ability of CuDEPP to serve as an electron donor or acceptor supports various energy‐storage applications. Combined with a lithium negative electrode, the CuDEPP electrode exhibited a long cycle life of several thousand cycles and fast charge–discharge rates up to 53 C and a specific energy density of 345 Wh kg−1 at a specific power density of 29 kW kg−1. Coupled with a graphite cathode, the CuDEPP anode delivered a specific power density of 14 kW kg−1. Whereas the capacity is in the range of that of ordinary lithium‐ion batteries, the CuDEPP electrode has a power density in the range of that of supercapacitors, thus opening a pathway toward new organic electrodes with excellent rate capability and cyclic stability.  相似文献   

14.
We report a new approach for nanosilicon–graphene hybrids with uniquely stable solid electrolyte interphase. Expanded graphite is gently exfoliated creating “defect‐free” graphene that is non‐catalytic towards electrolyte decomposition, simultaneously introducing high mass loading (48 wt. %) Si nanoparticles. Silane surface treatment creates epoxy chemical tethers, mechanically binding nano‐Si to CMC binder through epoxy ring‐opening reaction while stabilizing the Si surface chemistry. Epoxy‐tethered silicon pristine–graphene hybrid “E‐Si‐pG” exhibits state‐of‐the‐art performance in full battery opposing commercial mass loading (12 mg cm?2) LiCoO2 (LCO) cathode. At 0.4 C, with areal capacity of 1.62 mAh cm?2 and energy of 437 Wh kg?1, achieving 1.32 mAh cm?2, 340.4 Wh kg?1 at 1 C. After 150 cycles, it retains 1.25 mAh cm?2, 306.5 Wh kg?1. Sputter‐down XPS demonstrates survival of surface C‐Si‐O‐Si groups in E‐Si‐pG after repeated cycling. The discovered synergy between support defects, chemical‐mechanical stabilization of Si surfaces, and SEI‐related failure may become key LIB anode design rule.  相似文献   

15.
Zn2GeO4/N‐doped graphene nanocomposites have been synthesized through a fast microwave‐assisted route on a large scale. The resulting nanohybrids are comprised of Zn2GeO4 nanorods that are well‐embedded in N‐doped graphene sheets by in situ reducing and doping. Importantly, the N‐doped graphene sheets serve as elastic networks to disperse and electrically wire together the Zn2GeO4 nanorods, thereby effectively relieving the volume‐expansion/contraction and aggregation of the nanoparticles during charge and discharge processes. We demonstrate that an electrode that is made of the as‐formed Zn2GeO4/N‐doped graphene nanocomposite exhibits high capacity (1463 mAh g?1 at a current density of 100 mA g?1), good cyclability, and excellent rate capability (531 mAh g?1 at a current density of 3200 mA g?1). Its superior lithium‐storage performance could be related to a synergistic effect of the unique nanostructured hybrid, in which the Zn2GeO4 nanorods are well‐stabilized by the high electronic conduction and flexibility of N‐doped graphene sheets. This work offers an effective strategy for the fabrication of functionalized ternary‐oxide‐based composites as high‐performance electrode materials that involve structural conversion and transformation.  相似文献   

16.
We report a simple and template‐free strategy for the synthesis of hollow and yolk‐shell iron oxide (FeOx) nanostructures sandwiched between few‐layer graphene (FLG) sheets. The morphology and microstructure of this material are characterized in detail by X‐ray diffraction, X‐ray absorption near‐edge structure, X‐ray photoelectron spectroscopy, Raman spectroscopy, scanning and transmission electron microscopy. Its properties are evaluated as negative electrode material for Li‐ion batteries and compared with those of solid FeOx/FLG and two commercial iron oxides. In all cases, the content of carbon in the electrode has a great influence on the performance. The use of pristine FLG improves the capacity retention and further enhancement is achieved with the hollow structure. For a low carbon loading of 18 wt. %, the presence of metallic iron in the hollow and yolk‐shell FeOx/FLG composite significantly enhances the capacity retention, albeit with a relatively lower initial reversible capacity, retaining above 97 % after 120 cycles at 1000 mA g?1 in the voltage range of 0.1–3.0 V.  相似文献   

17.
To increase the conductivity of polyoxometalate‐based metal–organic frameworks (POMOFs) and promote their applications in the field of energy storage, herein, a simple approach was employed to improve their overall electrochemical performances by introducing a functionalized single‐walled carbon nanotubes (SWNT‐COOH). A new POMOF compound, [Cu18(trz)12Cl3(H2O)2][PW12O40] (CuPW), was successfully synthesized, then the size‐matched functionalized SWNT–COOH was introduced to fabricate CuPW/SWNT–COOH composite (PMNT–COOH) by employing a simple sonication‐driven periodic functionalization strategy. When the PMNT–COOH nanocomposite was used as the anode material for Lithium‐ion batteries (LIBs), PMNT–COOH( 3 ) (CuPWNC:SWNT‐COOH=3:1) showed superior behavior of energy storage, a high reversible capacity of 885 mA h g?1 up to a cycle life of 170 cycles. The electrochemical results indicate that the uniform packing of SWNT–COOH provided a favored contact between the electrolyte and the electrode, resulting in enhanced specific capacity during lithium insertion/extraction process. This fabrication of PMNT–COOH nanocomposite opens new avenues for the design and synthesis of new generation electrode materials for LIBs.  相似文献   

18.
The electrodes (anode and cathode) have an important role in the efficiency of a microbial fuel cell (MFC), as they can determine the rate of charge transfer in an electrochemical process. In this study, nanoporous gold electrode, prepared from commercially available gold-made compact disk, is utilized as the anode in a two-chamber MFC. The performance of nanoporous gold electrode in the MFC is compared with that of gold film, carbon felt and acid-heat-treated carbon felt electrodes which are usually employed as the anode in the MFCs. Electrochemical surface area of nanoporous gold electrode exhibits a 7.96-fold increase rather than gold film electrode. Scanning electron microscopy analysis also indicates the homogeneous biofilm is formed on the surface of nanoporous gold electrode, while the biofilm formed at the surface of acid-heat-treated carbon felt electrode shows rough structure. Electrochemical studies show although modifications applied on carbon felt electrodes improve its performance, nanoporous gold electrode, due to its structure and better electrochemical properties, acts more efficiently as the MFC’s anode. The maximum power density produced by nanoporous gold anode is 4.71 mW m?2 at current density of 16.00 mA m?2, while this value for acid-heat-treated carbon felt anode is 3.551 mW m?2 at current density of 9.58 mA m?2.  相似文献   

19.
Much attention has recently been focused on the synthesis and application of graphene analogues of layered nanomaterials owing to their better electrochemical performance than the bulk counterparts. We synthesized graphene analogue of 3D MoS2 hierarchical nanoarchitectures through a facile hydrothermal route. The graphene‐like MoS2 nanosheets are uniformly dispersed in an amorphous carbon matrix produced in situ by hydrothermal carbonization. The interlaminar distance between the MoS2 nanosheets is about 1.38 nm, which is far larger than that of bulk MoS2 (0.62 nm). Such a layered architecture is especially beneficial for the intercalation and deintercalation of Li+. When tested as a lithium‐storage anode material, the graphene‐like MoS2 hierarchical nanoarchitectures exhibit high specific capacity, superior rate capability, and enhanced cycling performance. This material shows a high reversible capacity of 813.5 mAh g?1 at a current density of 1000 mA g?1 after 100 cycles and a specific capacity as high as 600 mAh g?1 could be retained even at a current density of 4000 mA g?1. The results further demonstrate that constructing 3D graphene‐like hierarchical nanoarchitectures can effectively improve the electrochemical performance of electrode materials.  相似文献   

20.
Electrodes based on organic matter operating in aqueous electrolytes enable new approaches and technologies for assembling and utilizing batteries that are difficult to achieve with traditional electrode materials. Here, we report how thiophene‐based trimeric structures with naphthoquinone or hydroquinone redox‐active pendent groups can be processed in solution, deposited, dried and subsequently polymerized in solid state to form conductive (redox) polymer layers without any additives. Such post‐deposition polymerization offers efficient use of material, high mass loading (up to 10 mg cm?2) and good flexibility in the choice of substrate and coating method. By employing these materials as anode and cathode in an acidic aqueous electrolyte a rocking‐chair proton battery is built. The battery shows good cycling stability (85 % after 500 cycles), withstands rapid charging, with full capacity (60 mAh g?1) reached within 100 seconds, allows for direct integration with photovoltaics, and retains its favorable characteristics even at ?24 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号